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Abstract 

 

Plastic surgery has gained significant traction in modern medicine, with procedures like facial bone correction and nose 

correction becoming increasingly popular. These surgeries often result in substantial changes to facial features, 

challenging traditional methods of image analysis and recognition. This study leverages the HDA Plastic Surgery Face 

Database and state-of-the-art deep learning models—Xception, Vision Transformer (ViT), and Swin Transformer—to 

classify facial images into five distinct categories: eyebrow correction, eyelid correction, facelifts, facial bones 

correction, and nose correction. The dataset was preprocessed with image augmentation, normalization, and resizing to 

enhance model performance. Each model was fine-tuned to capture the subtle variations introduced by different 

surgeries. Results demonstrate the effectiveness of deep learning in this domain, with Swin Transformer achieving the 

highest accuracy of 95.5%, precision of 96.9%, and sensitivity of 95.1%.  
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Introduction 

Plastic surgery has emerged as a transformative field in modern medicine, enabling individuals to 

enhance or reconstruct their facial features. It encompasses a wide range of procedures, including 

cosmetic and reconstructive surgeries, that address both aesthetic and medical needs [1,2]. Among 

the most common facial surgeries are eyebrow, eyelid, facelift, facial bone, and nose correction. 

These procedures significantly change facial anatomy, often altering key features that traditional 

methods of facial analysis and recognition rely on. Analyzing the outcomes of facial surgeries is 

vital for multiple reasons. Firstly, it provides both patients and surgeons with valuable feedback to 

evaluate the success of the procedures and whether they meet preoperative goals. Secondly, 

automated methods can offer a standardized approach to surgical outcome analysis, reducing the 

subjectivity of manual assessments. This is particularly useful in training environments, where 
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aspiring surgeons need to understand the nuances of various surgical transformations. Imaging 

analysis in surgery enables precise preoperative planning, intraoperative guidance, and postoperative 

assessment, enhancing surgical accuracy, patient safety, and outcomes [3,4]. Despite its importance, 

the analysis of surgical outcomes remains a complex task due to the diversity and subtlety of changes 

introduced by facial surgeries. 

 

Machine learning (ML), a branch of artificial intelligence, has revolutionized numerous medical 

applications by offering solutions to intricate problems. ML models have shown significant potential 

in disease diagnosis [5-7], treatment prediction [8,9], and medical imaging analysis [10-14]. These 

models excel in detecting patterns and insights from large datasets, often surpassing traditional 

methods. In medical imaging, for instance, ML has enhanced tasks such as cancer detection [15,16], 

organ segmentation [17,18], and prediction of treatment outcomes, thereby contributing to 

personalized medicine and improving patient care [19,20]. Within the realm of machine learning, 

deep learning has emerged as a game-changer, particularly in the analysis of medical images. Deep 

learning models can automatically extract hierarchical features from raw data, making them highly 

effective for image classification, segmentation, and pattern recognition. The adaptability of deep 

learning methods makes them particularly useful for handling the intricate transformations 

associated with plastic surgeries, where traditional systems may falter. Deep learning has already 

found applications in various aspects of plastic surgery, paving the way for advancements in patient 

care [21], surgical planning [22,23], and postoperative assessments [24]. One notable application is 

preoperative planning, where models are trained to predict surgical outcomes based on patient 

anatomy [25,26]. By simulating potential results, deep learning assists surgeons in tailoring 

procedures to individual needs, improving patient satisfaction, and reducing the likelihood of 

complications. 

 

Deep learning plays a vital role in evaluating surgical results in postoperative assessments. Models 

trained to analyze postoperative images can provide quantitative metrics on facial symmetry, 

proportionality, and aesthetic improvement. Such systems help ensure that surgical outcomes align 

with the intended goals, offering an unbiased perspective that complements surgeons' manual 

evaluations. Another critical application of deep learning in plastic surgery is enhancing facial 

recognition systems [27,28]. Plastic surgery-induced changes can significantly disrupt traditional 

facial recognition algorithms. Deep learning models, however, are capable of learning invariant 

features, making them robust to transformations caused by surgeries. This capability is crucial in 

security and identification systems, ensuring accurate recognition even in cases where facial 

modifications are substantial. Deep learning also contributes to educational tools for surgical training 

[29]. By automating the classification and evaluation of surgical images, these models help train 

surgeons to recognize and understand the outcomes of various procedures. This is particularly useful 

for developing expertise in complex surgeries, where subtle differences in outcomes are critical for 

success. Furthermore, deep learning can assist in predicting long-term surgical outcomes [30,31]. 

By integrating preoperative data with postoperative images, these models can forecast how surgical 

results will evolve, helping surgeons make informed decisions about the techniques and materials 

they use. 

 

In this study, we focus on a specific application of deep learning in plastic surgery: the classification 

of facial images based on the type of surgery performed. Using the HDA Plastic Surgery Face 

Database, which includes images before and after surgeries, we classify these into five categories: 
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eyebrow correction, eyelid correction, facelift, facial bones correction, and nose correction. To 

accomplish this, we employ state-of-the-art deep learning models, including Xception, Swin 

Transformer, and Vision Transformer (ViT). By automating the classification of facial surgeries, 

this work demonstrates the potential of deep learning to standardize surgical assessments, enhance 

medical training, and provide valuable feedback for patients and surgeons alike. 

 

Methods and Materials 

Dataset 

 

The study utilized the HDA Plastic Surgery Face Database [32], a specialized dataset curated to 

analyze the effects of plastic surgery on facial features. This dataset consists of 1,278 facial images 

captured both before and after surgical procedures, providing a comprehensive resource for studying 

surgery-induced transformations. The database includes images representing five categories of 

common facial surgeries: 

 

• Eyebrow Correction: Adjustments to eyebrow shape and positioning. 

• Eyelid Correction: Surgeries addressing eyelid structure, such as blepharoplasty. 

• Facelift: Procedures targeting overall facial rejuvenation and wrinkle reduction. 

• Facial Bones Correction: Structural modifications to the bones of the face, often aimed at 

reshaping or reconstructing features. 

• Nose Correction: Procedures such as rhinoplasty to enhance or reconstruct the nasal 

structure. 

 

The dataset ensures a balanced representation of the five surgery categories, enabling robust model 

training and evaluation. Each image is labeled according to its respective surgery type, facilitating 

supervised learning tasks. The inclusion of diverse facial poses and lighting conditions enhances the 

dataset's suitability for training models to generalize well to real-world scenarios. To prepare the 

dataset for deep learning models, preprocessing steps were applied to normalize and augment the 

images.  

 

Deep Learning Models 

 

Deep learning models can be broadly categorized into convolutional neural network (CNN)-based 

models and transformer-based models, each with unique advantages for image classification tasks. 

CNN-based models, like Xception, excel in capturing local patterns and spatial hierarchies through 

convolutional layers, making them highly effective for tasks requiring detailed feature extraction, 

such as identifying subtle changes in facial features post-surgery. Transformer-based models, 

including Vision Transformer (ViT) and Swin Transformer, leverage self-attention mechanisms to 

capture both local and global relationships within images. These architectures are particularly suited 

for analyzing complex transformations, offering enhanced adaptability and scalability. In this study, 

we employ Xception alongside ViT and Swin Transformer to classify facial images into five surgery 

categories, leveraging their complementary strengths. 
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Xception 

 

The Xception model [33] is a deep convolutional neural network based on depthwise separable 

convolutions, which decompose a standard convolution operation into two parts: a depthwise 

convolution and a pointwise convolution. This architectural innovation significantly reduces the 

number of parameters and computational costs while maintaining or improving the model’s ability 

to learn complex features.  

 

 
Figure 1 Examples of 5 different plastic surgeries 1st row: eyebrow, 2nd row: eyelid, third row: facelift, fourth row: facial bones, 

and fifth row: nose correction [32]. 

Technically, the depthwise convolution applies to a single filter to each input channel, extracting 

spatial features independently, while the pointwise convolution applies to a 1x1 kernel to combine 

these spatial features across all channels. By separating spatial and depth operations, Xception 

effectively captures both fine-grained and higher-level representations of the input image. In this 

study, the Xception model was pre-trained on ImageNet, providing a strong initial feature 

representation. The network was fine-tuned on the HDA Plastic Surgery Face Database by replacing 

the original classification layer with a custom fully connected layer, configured to classify the 

images into five categories. The final output layer used a softmax activation function to provide 

probabilities for each class. The model’s architecture, with its hierarchical feature extraction 

capabilities, made it particularly effective at identifying localized changes, such as those seen in 

eyebrow and eyelid corrections. However, its performance was limited in scenarios requiring a 

broader contextual understanding, such as facelifts or facial bone corrections. 
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Vision Transformer (ViT) 

 

The Vision Transformer (ViT) [34] is a novel architecture that applies transformer-based self-

attention mechanisms to image classification tasks. Unlike traditional CNNs, ViT processes an 

image as a sequence of patches, treating each patch as a token similar to words in natural language 

processing tasks. Each patch is first flattened into a one-dimensional vector and then passed through 

a linear projection layer, which embeds the patch into a high-dimensional space.  

 

 
Figure 2 Vision Transformer vs Swin Transformer [35] 

The self-attention mechanism in ViT operates by computing relationships between all pairs of 

patches, capturing both local and global dependencies. This is achieved through the multi-head self-

attention (MHSA) mechanism, where multiple attention heads independently learn different feature 

representations. These features are aggregated to provide a comprehensive understanding of the 

image. The ViT model used in this study was pre-trained on large-scale datasets and fine-tuned on 

the HDA Plastic Surgery Face Database. Images were resized and divided into fixed-size patches 

(e.g., 16x16 pixels), and positional embeddings were added to retain spatial information. The 

transformer encoder then processed these embeddings, capturing intricate relationships between 

patches. The final classification layer mapped the learned representations to the five surgery 

categories. ViT demonstrated remarkable ability in capturing global transformations, making it 

highly effective for surgeries that involve significant structural changes, such as facial bone 

correction and facelifts. 

 

Swin Transformer 

 

The Swin Transformer [36] builds on the principles of transformers while addressing their scalability 

challenges for high-resolution image processing. Unlike ViT, which processes the entire image as a 

sequence of patches, the Swin Transformer introduces a hierarchical architecture that computes 

attention within smaller, non-overlapping windows. This window-based attention mechanism 

enables the model to focus on local regions, significantly reducing computational complexity. A key 

innovation in the Swin Transformer is the shifted window attention, where the window boundaries 

shift between layers to ensure connections between adjacent windows. This shifting mechanism 

allows the model to aggregate local features into a global context as the hierarchy progresses through 

the network. Additionally, the hierarchical structure progressively reduces image resolution, 
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enabling multi-scale feature learning like CNNs. In this study, the Swin Transformer was pre-trained 

on large-scale datasets and fine-tuned for the classification task. The model split each image into 

fixed-size windows, applied attention within each window, and aggregated these features across 

layers using the shifted window mechanism. The final classification head mapped the learned 

features to the five surgery categories. Swin Transformer excelled in distinguishing between subtle 

and overlapping features, such as those present in facelifts and nose corrections. Its ability to balance 

local feature extraction with global context understanding made it the top-performing model in this 

study, achieving the highest accuracy, precision, and sensitivity across all categories. 

 

Experiments 
 

Training Process and Configuration 

 

The training process involved fine-tuning the deep learning models—Xception, Vision Transformer 

(ViT), and Swin Transformer—on the HDA Plastic Surgery Face Database to classify facial images 

into five distinct categories: eyebrow correction, eyelid correction, facelift, facial bones correction, 

and nose correction. Each model was initialized with pre-trained weights, leveraging knowledge 

from large-scale datasets like ImageNet. This approach allowed the models to begin training with a 

strong feature representation and focus on learning the specific features related to plastic surgery 

transformations. 

 

The dataset, comprising 1,278 images, was divided into three subsets: 70% for training, 15% for 

validation, and 15% for testing. Care was taken to ensure a balanced representation of all five 

categories within each subset, avoiding class imbalance issues that could bias the models during 

training or evaluation. Preprocessing steps included resizing all images to a standard input size of 

224x224 pixels to meet the input requirements of the models. Additionally, pixel values were 

normalized to the range [0, 1], which helps stabilize and speed up the training process by ensuring 

that input features have similar scales. To enhance the robustness and generalizability of the models, 

various data augmentation techniques were applied during training. These included random 

rotations, horizontal flips, brightness adjustments, and cropping. These augmentations simulated 

variations in facial poses and lighting conditions, enabling the models to perform well on diverse 

input scenarios. The training utilized the categorical cross-entropy loss function, suitable for multi-

class classification tasks, and the Adam optimizer with an initial learning rate of 0.001. A learning 

rate scheduler was employed to dynamically adjust the learning rate during training, promoting 

stable convergence and avoiding overfitting. The models were trained for a maximum of 50 epochs, 

with early stopping based on validation performance to prevent unnecessary computations and 

potential overfitting. 

 

The training process was carried out on an NVIDIA GPU with 16GB memory to ensure efficient 

handling of the computational demands of deep learning. The validation set was used to monitor the 

models’ performance during training, allowing for hyperparameter adjustments and the selection of 

the best-performing model configuration. After training, the models were evaluated on the test set 

to determine their final performance in terms of accuracy, precision, sensitivity, and F1 score. This 

rigorous training process ensured that the models were well-optimized for the task of facial surgery 

classification. 
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Results 

 

The classification models—Xception, Vision Transformer (ViT), and Swin Transformer—were 

evaluated on the HDA Plastic Surgery Face Database, with metrics including accuracy, precision, 

sensitivity, and F1 score. The results of these evaluations are summarized in Table 1. 

 
Table1. Performance comparison of different deep learning models 

 
Model Accuracy Precision Sensitivity F1score 

Xception 87.3% 88.1% 79.6% 83.63% 

ViT 93.2% 94.5% 91.8% 93.13% 

Swin 95.5% 96.9% 95.1% 95.99% 

 

The results indicate that the Swin Transformer outperformed both Xception and Vision Transformer 

in all metrics, achieving an accuracy of 95.5%, a precision of 96.9%, a sensitivity of 95.1%, and an 

F1 score of 95.99%. Its ability to balance local and global feature extraction using hierarchical and 

shifted window attention mechanisms likely contributed to its superior performance. The model 

excelled particularly in distinguishing overlapping features, such as those in facelifts and nose 

corrections, where both subtle and broad structural changes occur. The Vision Transformer also 

performed strongly, with an accuracy of 93.2%, precision of 94.5%, sensitivity of 91.8%, and an F1 

score of 93.13%. Its self-attention mechanism, which models global dependencies across image 

patches, proved effective in analyzing surgeries involving large-scale transformations, such as facial 

bone correction and facelifts. However, its performance was slightly lower than the Swin 

Transformer, possibly due to its lack of hierarchical feature aggregation. The Xception model, while 

achieving a respectable accuracy of 87.3%, had the lowest precision (88.1%), sensitivity (79.6%), 

and F1 score (83.63%) among the three models. As a CNN-based model, Xception excelled in 

capturing localized changes, making it suitable for surgeries like eyebrow and eyelid corrections. 

However, its performance was limited in scenarios requiring a broader contextual understanding, 

such as facelifts and facial bone corrections, where global feature extraction is crucial. The confusion 

matrices for each model revealed key insights into their classification capabilities: The Swin 

Transformer showed minimal misclassifications across all five surgery categories, particularly 

excelling in distinguishing facelifts from other procedures. The Vision Transformer demonstrated 

strong classification performance but showed slight confusion between closely related surgeries like 

nose corrections and facelifts. The Xception model struggled more with overlapping features, 

leading to increased misclassifications in surgeries with broader structural changes. 

 

In summary, the hierarchical architecture and shifted window attention of the Swin Transformer 

gave it an edge in handling both local and global transformations. This makes it particularly effective 

for tasks involving complex image relationships, such as facial surgery classification. Furthermore, 

both transformer-based models (ViT and Swin Transformer) significantly outperformed the CNN-

based Xception model, highlighting the importance of self-attention mechanisms in capturing global 

dependencies. While Xception performed comparatively lower overall, its localized feature 

extraction strengths make it a viable option for tasks focused on subtle, localized changes. 
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Limitations and Future Works 

While the results of this study highlight the effectiveness of deep learning models, particularly 

transformer-based architectures, in classifying facial surgeries, certain challenges and areas for 

improvement remain. Addressing these limitations and expanding the scope of the research can 

further refine the utility of these models in clinical applications. Below, we outline the limitations: 

 

- Dataset Size: The HDA Plastic Surgery Face Database contains 1,278 images, which, while 

valuable, may not fully capture the variability in facial features and surgical outcomes across 

diverse populations. A larger dataset with greater demographic diversity (e.g., age, ethnicity, and 

gender) would enhance the model's generalizability. 

 

- Class Imbalance: Although efforts were made to balance the dataset, certain surgery categories 

may have fewer samples, potentially impacting the model's ability to perform equally well across 

all classes. 

 

- Limited Surgery Types: The study focuses on five common facial surgeries, but the inclusion of 

additional types, such as jaw surgeries, lip augmentations, or skin resurfacing, could provide a 

more comprehensive analysis of surgical transformations.  

 

- Pose and Lighting Variations: While data augmentation partially addressed variability in pose 

and lighting, real-world scenarios might include more extreme conditions that were not fully 

simulated in the training set. 

 

- Overfitting Risk in Pre-trained Models: Fine-tuning pre-trained models on relatively small 

datasets risks overfitting, despite regularization techniques such as dropout and data 

augmentation.  

 

- Limited Focus on Explainability: The study primarily focuses on classification performance 

without delving into explainability techniques, such as Grad-CAM or SHAP, which could 

provide insights into the specific features the models rely on for predictions. 

 

This study demonstrates the potential of deep learning in facial surgery classification but highlights 

several areas for improvement. Expanding the dataset to include more diverse demographics and 

additional surgery types would enhance model robustness and applicability. While ImageNet pre-

trained models performed well, pretraining on surgery-specific datasets could improve feature 

extraction. Incorporating multimodal data, such as patient metadata, alongside images, could provide 

more holistic insights. Future work should also explore explainability techniques like Grad-CAM to 

better understand the features influencing predictions, making models more interpretable for clinical 

use. Testing in real-world environments would validate the models’ practical utility and robustness. 

Beyond classification, developing models to predict surgical outcomes and applying deep learning 

to other areas of plastic surgery, such as reconstructive or body surgeries, could broaden its impact. 

Addressing class imbalance through synthetic data generation and advanced techniques like GANs 

could further improve performance in underrepresented categories. 
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Conclusion 

This study demonstrates the effectiveness of deep learning models in classifying facial images into 

five common types of plastic surgeries—eyebrow correction, eyelid correction, facelift, facial bones 

correction, and nose correction—using the HDA Plastic Surgery Face Database. Among the models 

tested, the Swin Transformer achieved the highest accuracy (95.5%), precision (96.9%), and F1 

score (95.99%), outperforming the Vision Transformer (ViT) and Xception. The results highlight 

the capability of transformer-based architectures to handle both local and global transformations 

effectively, making them particularly suitable for complex image classification tasks in plastic 

surgery. Future work should focus on addressing these limitations and expanding the scope of the 

research to other areas of plastic surgery, including reconstructive and body procedures. By 

integrating multimodal data and deploying models in real-world environments, future studies can 

further refine the role of deep learning in plastic surgery, ultimately contributing to improved 

surgical practices and patient outcomes.   
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