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Abstract 

 

Congenital heart disease (CHD) is a leading cause of morbidity and mortality in children, requiring early and accurate 

diagnosis for effective management. In this study, we employed advanced deep learning models—EfficientNetV2, 

ResNeSt, and MobileNetV4—to classify CHD using chest X-ray (CXR) images. A dataset comprising 828 images, 

categorized into normal, atrial septal defect (ASD), ventricular septal defect (VSD), and patent ductus arteriosus (PDA), 

was utilized. The dataset was split into training, validation, and test sets in a stratified manner to ensure balanced 

evaluation. EfficientNetV2 achieved the best performance, with an accuracy of 92.5%, precision of 90.9%, sensitivity 

of 84.1%, and specificity of 88.6%, demonstrating its reliability for CHD diagnosis. ResNeSt closely followed, with an 

accuracy of 91.7% and precision of 90.4%, while MobileNetV4, though slightly less accurate at 88.6%, offered a 

lightweight alternative for resource-constrained environments.   
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Introduction 

Congenital heart disease (CHD) is a collective term for structural and functional abnormalities in the 

heart and great vessels that are present from birth. It is among the most prevalent birth defects, 

affecting approximately 8 in every 1,000 live births globally, and represents a significant cause of 

infant morbidity and mortality [1,2]. CHD varies widely in its presentation, ranging from mild 

defects that may remain asymptomatic to severe malformations requiring immediate medical 

intervention. Three common forms of CHD include atrial septal defect (ASD), ventricular septal 

defect (VSD), and patent ductus arteriosus (PDA). ASD is characterized by an opening in the septum 

between the atria, which leads to increased pulmonary blood flow and may result in complications 

such as stroke, pulmonary hypertension, and heart failure. Similarly, VSD involves a defect in the 

interventricular septum, causing oxygen-rich blood to mix with oxygen-poor blood, leading to 

symptoms like fatigue, poor growth, and respiratory distress. PDA occurs when the ductus 
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arteriosus, a vital fetal blood vessel, fails to close after birth, allowing abnormal circulation between 

the aorta and pulmonary artery, which can result in heart murmurs, pulmonary congestion, and 

eventual heart failure. The clinical management of CHD depends on its type and severity, ranging 

from pharmacological interventions like diuretics and ACE inhibitors to more invasive approaches 

such as catheterization and surgical correction. Early and accurate diagnosis is paramount to 

ensuring timely treatment and preventing irreversible complications, particularly in resource-

constrained settings where advanced diagnostic tools may not be readily available [3,4]. 

 

Chest X-rays (CXR) remain an essential imaging modality in medical images analysis [5-8]. In 

pediatric cardiology, especially in regions where advanced diagnostic tools like echocardiography, 

MRI, or CT are unavailable. CXRs offer a non-invasive, cost-effective, and rapid means of 

evaluating cardiac and pulmonary anatomy, making them invaluable in the initial assessment of 

suspected CHD cases. For conditions like ASD, VSD, and PDA, CXRs can reveal key features such 

as cardiomegaly (enlarged heart silhouette), pulmonary vascular congestion, and abnormal 

positioning of cardiac or vascular structures [9, 10]. These findings provide critical insights that 

guide further diagnostic and therapeutic steps. Despite their utility, the accurate interpretation of 

CXRs requires specialized training, as subtle anomalies can be easily overlooked. This challenge is 

particularly pronounced in underdeveloped regions where skilled radiologists may be scarce. 

Consequently, there is an urgent need for automated tools capable of supporting clinicians by 

accurately detecting and highlighting potential abnormalities in CXR images, thereby bridging the 

gap in diagnostic expertise and improving patient care. 

 

The rapid advancement of artificial intelligence (AI) and machine learning (ML) has transformed 

the landscape of medical imaging, enabling automated, efficient, and highly accurate analysis of 

complex datasets. Among these, deep learning (DL), a subset of ML, has emerged as a powerful 

approach for analyzing medical images, owing to its ability to learn and extract intricate patterns 

from data. Convolutional neural networks (CNNs), a specialized type of DL architecture, have 

demonstrated remarkable success in tasks such as image classification [11-15], segmentation 

[16,17], and anomaly detection [18-20]. When applied to CHD diagnosis, DL models can process 

large volumes of CXR data to identify subtle abnormalities indicative of conditions like ASD, VSD, 

and PDA with a level of sensitivity and specificity that rivals or even surpasses human expertise. 

Moreover, these models can generate attention heat maps, which visually highlight regions of 

interest, such as the heart and pulmonary vasculature, enhancing the interpretability of their 

predictions and fostering trust among clinicians. By automating the detection and classification of 

CHD from CXRs, DL models hold the potential to revolutionize diagnostic workflows, particularly 

in underdeveloped regions where access to specialized care is limited. This study aims to harness 

the power of DL to develop an accessible and interpretable diagnostic system, ultimately improving 

early detection and treatment outcomes for children with CHD. 

 

In this paper, we employ convolutional neural network (CNN)-based deep learning models to 

perform the classification of normal and three different abnormal hearts using chest X-ray images. 

The proposed approach focuses on leveraging the rich features extracted by CNNs to accurately 

distinguish between healthy and CHD-affected hearts, thereby laying the foundation for an efficient, 

scalable, and interpretable diagnostic tool that can assist clinicians worldwide. 
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Methods and Materials 

Dataset 

 

The dataset used in this study comprises 828 chest X-ray (CXR) images, categorized into four 

distinct groups to facilitate the classification of congenital heart disease (CHD) [21]. The first group 

includes normal images, representing individuals without any structural or functional heart 

abnormalities, which serve as a baseline for comparison. The second group contains X-rays of 

individuals diagnosed with atrial septal defect (ASD), characterized by features such as an enlarged 

heart silhouette and increased pulmonary blood flow. The third group consists of images exhibiting 

ventricular septal defect (VSD), where abnormalities include mixed oxygenated and deoxygenated 

blood flow leading to pulmonary congestion and cardiomegaly. The final group includes X-rays 

associated with patent ductus arteriosus (PDA), which show signs of abnormal blood flow between 

the aorta and pulmonary artery, often resulting in pulmonary vascular changes. This well-annotated 

dataset provides a robust foundation for training and evaluating the proposed deep-learning models 

in distinguishing normal and abnormal heart conditions. 

 

Deep Learning Models 

 

Deep learning is a powerful subset of artificial intelligence that relies on neural networks to extract 

and learn hierarchical features from data. At its foundation are artificial neural networks (ANNs), 

which consist of layers of interconnected nodes (neurons) that process input data through weights 

and activation functions. Deep neural networks (DNNs) extend this concept by incorporating 

multiple hidden layers, enabling the model to learn increasingly abstract and complex 

representations of the data. In particular, convolutional neural networks (CNNs), a specialized class 

of DNNs, have proven highly effective for image analysis tasks due to their ability to leverage spatial 

hierarchies within data. A CNN typically comprises convolutional layers, pooling layers, and fully 

connected layers. Convolutional layers apply trainable filters (kernels) that slide over the input image 

to detect local patterns, such as edges, textures, and shapes. These filters allow the network to 

preserve spatial relationships while identifying critical features. Pooling layers reduce the spatial 

dimensions of the data through operations like max-pooling or average-pooling, which enhance 

computational efficiency and make the model more robust to variations, such as scale or orientation. 

Finally, fully connected layers aggregate learned features to make final predictions. 

 

In the context of medical imaging, CNNs are particularly adept at recognizing subtle and complex 

patterns associated with pathological states. For example, in chest X-rays (CXR), CNNs can detect 

features such as cardiac enlargement, abnormal pulmonary vasculature, or structural anomalies 

indicative of congenital heart disease (CHD). These patterns may span various scales, from fine-

grained textures to large-scale structural changes. By training CNNs on labeled datasets, the models 

can learn to differentiate between normal and abnormal conditions, leveraging feature extraction and 

classification capabilities. Deep learning models benefit significantly from large datasets, where 

diverse examples enable the network to generalize effectively to unseen data. During training, the 

model adjusts its weights iteratively through backpropagation and gradient descent, minimizing a 

loss function that quantifies the error between predictions and ground truth labels. The use of 

regularization techniques (e.g., dropout and weight decay) and data augmentation (e.g., rotations, 
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flips, and intensity adjustments) further ensures robustness and reduces the risk of overfitting. 

 

 
Figure 1 congenital heart diseases. first row: normal cases. second row: ASD. third row: PDA. third row: VSD [21] 

 

By employing CNNs for medical image analysis, this study harnesses the network’s ability to 

analyze and interpret complex patterns in CXRs. The model’s hierarchical feature extraction pipeline 

enables it to identify both global structural abnormalities, such as cardiomegaly, and localized 

changes, like pulmonary congestion or septal defects. This capability forms the backbone of the 

proposed system for detecting and diagnosing congenital heart disease. 

 

ResNeSt (Split-Attention Networks) 

ResNeSt, short for ResNet Split-Attention Networks [22], is an enhancement of the classic ResNet 

architecture that introduces a novel split-attention mechanism to better capture multi-scale features 

in image data. The core innovation lies in the split-attention block, which divides the feature maps 

in each residual block into multiple splits. Each split is processed independently, with a dedicated 

attention mechanism applied to focus on the most relevant features within that split. The outputs 

from these splits are then aggregated to form the final feature representation for the block. This 

process enables the model to adaptively prioritize features at different spatial and channel scales, 

which is critical for tasks that require a detailed understanding of both global and local patterns. 

Architecturally, ResNeSt retains the core components of ResNet, including skip connections and 

stacked residual blocks, ensuring compatibility with existing frameworks. However, it extends these 

components by incorporating the split-attention blocks. Each block includes three main steps: 

splitting the input feature maps, applying attention to each split, and combining the attended features. 
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This structure improves the model's representational capacity while maintaining computational 

efficiency. The scalability of ResNeSt allows it to perform well on both small-scale and large-scale 

datasets, making it ideal for high-precision classification, object detection, and medical imaging 

tasks like detecting abnormalities in chest X-rays. Its multi-scale feature extraction capability is 

especially valuable in applications where patterns of interest vary in size, shape, and position. 

 

MobileNetV4 

MobileNetV4 [23] represents the latest iteration in the MobileNet family, specifically optimized for 

use on mobile and edge devices. Its architecture builds upon the success of its predecessors 

(MobileNetV2 and V3) by improving both feature extraction efficiency and computational 

performance. The cornerstone of MobileNetV4 is the inverted bottleneck block, a design that uses 

an initial expansion layer to increase feature dimensionality, followed by a depthwise convolution 

to reduce spatial complexity, and finally a compression layer to project features back into a smaller 

space. This structure balances computational efficiency with the ability to capture meaningful 

patterns. 

One key architectural improvement in MobileNetV4 is the introduction of multi-query attention 

modules, which enhance the model's ability to selectively focus on critical features. Unlike 

conventional attention mechanisms, these modules operate efficiently on low-power devices without 

significantly increasing model complexity. MobileNetV4 also standardizes the design of its inverted 

bottlenecks across layers, simplifying the model while improving consistency in feature 

representation. Additionally, MobileNetV4 includes optimizations for fused operations that combine 

convolutional and activation layers, reducing the number of operations and improving inference 

speed. The architecture of MobileNetV4 is particularly suited for scenarios with limited 

computational resources, such as mobile applications, embedded systems, and edge computing. It is 

widely used in real-time image classification, face recognition, and object detection tasks, where 

low latency and energy efficiency are critical requirements. The model's lightweight design and 

scalability make it a practical choice for deploying deep learning on devices with hardware 

constraints. 

 

EfficientNetV2 

EfficientNetV2 [24] builds on the original EfficientNet series, which introduced a systematic 

approach to scaling model size, depth, and input resolution. The key advancement in EfficientNetV2 

lies in its ability to train faster and achieve higher accuracy through architectural optimizations and 

enhanced training techniques. One of the core architectural changes is the replacement of traditional 

MBConv blocks with Fused-MBConv blocks, which combine depthwise convolutions and pointwise 

convolutions into a single fused operation. This reduces computational overhead while preserving 

the ability to learn spatial and channel-wise features effectively. EfficientNetV2 also incorporates 

progressive learning, where the model is trained on progressively larger input sizes and more 

complex augmentations. This approach allows the model to learn robust features incrementally, 

improving generalization on large-scale datasets. Another key enhancement is the use of stochastic 

depth and RandAugment, which introduce random variations during training to reduce overfitting 

and increase robustness. The architecture further optimizes parameter usage by carefully balancing 

the number of filters, block depths, and input resolutions through a compound scaling formula. 

EfficientNetV2 achieves state-of-the-art performance on benchmarks such as ImageNet while 
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maintaining lower computational requirements compared to previous architectures. Its ability to 

handle large datasets efficiently makes it a popular choice for applications like medical imaging, 

where high-resolution data and accurate feature extraction are critical. For example, in tasks like 

disease diagnosis or organ segmentation, EfficientNetV2 can analyze large volumes of medical 

images with a high degree of precision and speed. 

 

Experiments 
 

Training and Configuration 

 

The training process for the deep learning models is centered around optimizing the network's 

parameters to minimize the error between predictions and ground truth labels. This is achieved 

through backpropagation and the use of an optimizer, specifically the Adam optimizer, which 

combines momentum and adaptive learning rates for efficient convergence. The loss function 

employed is categorical cross-entropy, as it is well-suited for multi-class classification tasks. To 

improve generalization and prevent overfitting, regularization techniques such as dropout, which 

randomly deactivates neurons during training, and weight decay (L2 regularization), which penalizes 

large weights, are applied. Additionally, data augmentation is extensively utilized to artificially 

expand the dataset by applying transformations such as rotation, flipping, scaling, and brightness 

adjustments. The training process also incorporates early stopping, monitoring the validation loss to 

halt training once the model's performance ceases to improve, further mitigating overfitting risks. 

 

The dataset consists of 828 chest X-ray (CXR) images, divided into four classes: normal, atrial septal 

defect (ASD), ventricular septal defect (VSD), and patent ductus arteriosus (PDA). To ensure robust 

training and evaluation, the dataset is split into three subsets: 70% for training, 20% for validation, 

and 10% for testing. This stratified split maintains the proportional representation of each class 

across all subsets, ensuring balanced learning and evaluation. The training set is used to update the 

model weights, while the validation set monitors performance and aids in hyperparameter tuning. 

Finally, the test set provides an unbiased assessment of the model's generalization capabilities. 

 

In terms of configuration, all input images are resized to a consistent dimension suitable for the 

chosen convolutional neural network (CNN) architecture. The batch size, learning rate, and number 

of epochs are carefully tuned to balance computational efficiency and performance. Training is 

performed using GPUs to accelerate computation, and checkpoints are saved periodically to preserve 

the best-performing model. This systematic approach ensures that the deep learning models are 

trained effectively to classify normal and abnormal heart conditions with high accuracy. 

 

Results 

 

The classification performance of the three deep learning models—ResNeSt, MobileNetV4, and 

EfficientNetV2—was evaluated using accuracy, precision, sensitivity, and specificity, providing a 

comprehensive assessment of their capabilities in diagnosing congenital heart disease. Accuracy 

measured the proportion of correctly classified cases, both normal and abnormal, out of the total 

number of samples, providing an overall assessment of model performance. Precision reflected the 

proportion of true positive predictions among all positive predictions, highlighting the model's 

ability to correctly identify abnormal cases without generating false positives.  
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Table1. Classification performance of deep learning models for congenital heart disease. 

Model Accuracy Precision Sensitivity Specificity 

ResNeSt 91.7% 90.4% 84.2% 85.1% 

MobileNetV4 88.6% 85.1% 79.9% 80.4% 

EfficientNetV2 92.5% 90.9% 84.1% 88.6% 

 

Sensitivity, or recall, assessed the proportion of actual positive cases (abnormal hearts) that were 

correctly identified by the model, indicating its effectiveness in minimizing false negatives. 

Specificity evaluated the proportion of true negative cases among all actual negative cases, 

emphasizing the model's capability to accurately identify normal cases without false positives. 

Together, these metrics offered a comprehensive evaluation of the models' strengths and weaknesses, 

enabling a detailed comparison of the performance of EfficientNetV2, ResNeSt, and MobileNetV4 

in diagnosing congenital heart disease from chest X-ray images. 

 

EfficientNetV2 demonstrated the best overall performance with an accuracy of 92.5%, closely 

followed by ResNeSt at 91.7%, while MobileNetV4 lagged behind at 88.6%. This trend highlights 

the robustness of EfficientNetV2 and ResNeSt in correctly classifying both normal and abnormal 

heart conditions. In terms of precision, which measures the reliability of identifying abnormal cases, 

EfficientNetV2 achieved the highest score at 90.9%, slightly surpassing ResNeSt's 90.4%, with 

MobileNetV4 trailing at 85.1%, suggesting a higher propensity for false positives in the latter. 

Sensitivity, an indicator of the models' ability to detect true abnormal cases, showed comparable 

performance between ResNeSt and EfficientNetV2, with values of 84.2% and 84.1%, respectively. 

MobileNetV4 exhibited the lowest sensitivity at 79.9%, indicating a higher likelihood of missing 

some abnormal cases. Specificity, which reflects the models' accuracy in identifying true normal 

cases, was highest for EfficientNetV2 at 88.6%, followed by ResNeSt at 85.1%, while MobileNetV4 

again recorded the lowest performance at 80.4%. Overall, EfficientNetV2 emerged as the most 

balanced and reliable model across all metrics, followed closely by ResNeSt, while MobileNetV4 

displayed relatively lower performance, particularly in terms of sensitivity and specificity. These 

results emphasize the superior capability of EfficientNetV2 and ResNeSt in diagnosing congenital 

heart disease from chest X-rays. 

 

Future Works 

The promising results achieved by the deep learning models in this study lay the foundation for 

further advancements in the automated diagnosis of congenital heart disease (CHD). Future work 

can explore several directions to enhance the robustness, interpretability, and clinical applicability 

of these models. One key area of improvement is expanding the dataset to include a larger and more 

diverse population, encompassing various age groups, ethnicities, and imaging conditions. A more 

extensive dataset would improve the generalizability of the models and ensure reliable performance 

across diverse clinical scenarios. 

Another potential direction involves integrating multi-modal data into the diagnostic pipeline. 

Combining chest X-ray (CXR) images with other clinical data, such as echocardiography results, 

patient demographics, and laboratory findings, could provide a more holistic understanding of the 

patient’s condition and improve diagnostic accuracy. Additionally, exploring advanced 

architectures, such as hybrid models combining convolutional neural networks (CNNs) with 

transformers, may further enhance feature extraction and classification capabilities. 
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Improving model interpretability is another crucial aspect of future work. Generating more detailed 

and clinically relevant attention heat maps or saliency maps could help clinicians better understand 

the rationale behind the model's predictions, fostering trust and facilitating adoption in real-world 

settings. Furthermore, deploying these models in resource-limited environments will require 

optimization for low-power devices, such as mobile or edge computing platforms, to ensure 

accessibility and scalability. 

Finally, clinical validation is an essential step to transition these models from research to practice. 

Conducting prospective studies in real-world healthcare settings will provide insights into the 

models' performance in aiding clinicians and improving patient outcomes. These efforts will pave 

the way for developing comprehensive, AI-driven diagnostic systems that can address the global 

burden of CHD, especially in underdeveloped regions where access to specialized care is limited. 

Through these advancements, deep learning-based tools can significantly enhance the early detection 

and management of CHD, contributing to improved healthcare equity and outcomes worldwide. 

Conclusion 

In this study, we evaluated the performance of three advanced deep learning models—

EfficientNetV2, ResNeSt, and MobileNetV4—for classifying congenital heart disease (CHD) using 

chest X-ray images. The results demonstrated that EfficientNetV2 achieved the highest overall 

accuracy, precision, and specificity, establishing it as the most effective model for CHD diagnosis 

in this context. ResNeSt closely followed, showcasing robust performance in accurately classifying 

normal and abnormal heart conditions. MobileNetV4, while slightly less accurate, proved to be a 

viable option for environments with limited computational resources due to its lightweight 

architecture. Despite the promising results, the study highlighted areas for future work, such as 

expanding the dataset to improve model generalization, integrating multi-modal data for more 

comprehensive diagnostics, and enhancing model interpretability through attention heat maps.  
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