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Abstract 

 

Mental health disorders such as depression, schizophrenia, and bipolar disorder remain difficult to diagnose 

objectively. Medical imaging techniques—such as MRI, fMRI, PET, and EEG—offer valuable insights into brain 

structure and function, revealing biomarkers linked to psychiatric conditions. Deep learning has recently transformed 

the analysis of these complex data by automatically extracting meaningful features from high-dimensional images. 

This review summarizes recent advances in applying deep learning models, including convolutional, recurrent, and 

graph neural networks, to mental health diagnosis. It highlights key imaging modalities, representative applications, 

and current limitations such as small datasets and limited interpretability. Emerging directions, including multimodal 

fusion and explainable AI, promise to enhance clinical reliability and understanding. Deep learning thus holds strong 

potential for improving early detection and personalized treatment in mental health care. 
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Introduction 

Mental health disorders such as depression, schizophrenia, bipolar disorder, and autism spectrum 

disorder represent a significant global health burden, affecting hundreds of millions of individuals 

worldwide. These conditions often lead to considerable personal suffering, social impairment, and 

economic costs. Despite their prevalence, the diagnosis of mental health disorders remains largely 

dependent on clinical interviews, behavioral assessments, and subjective symptom reporting. Such 

approaches are prone to variability between clinicians and may fail to capture the underlying 

neurobiological mechanisms of these disorders [1]. Recent advances in medical imaging have 

opened new possibilities for objective and quantitative assessment of brain structure and function. 

Techniques such as magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission 

tomography (PET), and electroencephalography (EEG) provide detailed insights into the brain’s 

anatomy, activity, and connectivity patterns. These imaging modalities have revealed subtle but 

consistent neural alterations associated with various psychiatric conditions, offering the potential 

for early diagnosis and personalized treatment planning [2]. 
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Figure 1MRI of the brains of a pair of identical twins. The one on the right has OCD, while the one on the left does not [3]. 

However, analyzing these high-dimensional and complex imaging data presents significant 

challenges. Traditional statistical and machine learning methods often require manual feature 

extraction and struggle to model the nonlinear relationships inherent in neuroimaging data. In 

contrast, deep learning has emerged as a transformative approach capable of automatically learning 

hierarchical and discriminative representations from raw images or signals. Convolutional neural 

networks (CNNs), recurrent neural networks (RNNs), and graph neural networks (GNNs) have 

shown remarkable success in pattern recognition tasks across diverse imaging modalities [4-7]. In 

the context of mental health, deep learning models have demonstrated promising results in 

detecting structural and functional abnormalities, identifying biomarkers, and differentiating 

between patient subgroups. These techniques can uncover complex brain signatures linked to 

psychiatric symptoms, advancing our understanding of mental illnesses beyond traditional 

diagnostic frameworks. Despite this progress, several barriers—such as limited dataset sizes, inter-

site variability, and lack of model interpretability—still hinder clinical deployment. 

 

This short review aims to summarize recent developments in the application of deep learning 

techniques to medical imaging for mental health disorder diagnosis. It highlights commonly used 

imaging modalities, key deep learning architectures, representative studies on major psychiatric 

conditions, and current challenges and future research directions in this rapidly evolving field. 

Common Imaging Modalities Used in Mental Health Diagnosis 

Medical imaging plays a pivotal role in investigating the structural, functional, and metabolic 

abnormalities associated with mental health disorders. Each modality provides unique insights into 

the brain’s organization and activity, supporting data-driven diagnostic and predictive modeling. 

The following are the most commonly used imaging techniques in deep learning–based psychiatric 

research. 
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Structural Magnetic Resonance Imaging (sMRI) 

Structural MRI is widely employed to examine brain anatomy and detect morphological 

abnormalities in psychiatric disorders. It provides high-resolution images of gray and white matter, 

allowing the measurement of cortical thickness, surface area, and volumetric changes in specific 

brain regions. Studies have shown that patients with depression or schizophrenia often exhibit 

reduced gray matter volume in the prefrontal cortex and hippocampus. Deep learning methods, 

particularly 3D convolutional neural networks (3D CNNs), have been used to automatically extract 

structural features from sMRI for the classification of mental disorders. These models outperform 

traditional feature-based approaches by learning spatially distributed biomarkers directly from 

imaging data [8,9]. 

 

Functional Magnetic Resonance Imaging (fMRI) 

Functional MRI measures blood-oxygen-level-dependent (BOLD) signals to assess brain activity 

and functional connectivity patterns. It is particularly useful for identifying disrupted brain 

networks in mental illnesses such as major depressive disorder, schizophrenia, and autism 

spectrum disorder. Deep learning models applied to fMRI data often focus on learning 

spatiotemporal patterns that represent brain dynamics. Recurrent neural networks (RNNs) and 

graph convolutional networks (GCNs) have been used to model these complex functional 

interactions. For instance, GNN-based frameworks can represent brain regions as nodes and their 

connectivity as edges, enabling the discovery of altered communication pathways in patients with 

psychiatric conditions [10]. 

 

Positron Emission Tomography (PET) and Single-Photon Emission Computed Tomography 

(SPECT) 

PET and SPECT imaging techniques provide valuable information about cerebral metabolism, 

neurotransmitter activity, and receptor binding. These modalities are especially informative for 

disorders involving neurochemical imbalances, such as depression, Alzheimer’s disease, and 

schizophrenia. Deep learning approaches, including CNNs and autoencoders, have been utilized to 

identify metabolic signatures and predict disease progression. Moreover, hybrid PET/MRI systems 

enable multimodal deep learning models to jointly analyze metabolic and structural information, 

improving diagnostic accuracy [11]. 

 

Electroencephalography (EEG) and Magnetoencephalography (MEG) 

EEG and MEG record brain activity with high temporal resolution, making them suitable for 

studying dynamic neural oscillations in psychiatric disorders such as attention-deficit/hyperactivity 

disorder (ADHD), depression, and anxiety. Deep learning models, particularly convolutional and 

recurrent architectures, have been applied to EEG signals for emotion recognition, stress detection, 

and early diagnosis of mental health abnormalities. By automatically extracting temporal and 

spectral features, these models have demonstrated improved classification accuracy compared to 

conventional signal-processing methods [12]. 
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Multimodal Imaging 

Combining multiple imaging modalities provides a more comprehensive understanding of the 

brain’s structure and function. For example, integrating sMRI and fMRI allows simultaneous 

analysis of both anatomical and functional abnormalities, while fusion with EEG or PET data 

enhances sensitivity to neurochemical and electrophysiological changes. Multimodal deep learning 

frameworks—such as hybrid CNN-RNN or attention-based fusion models—have shown great 

potential in improving diagnostic performance and interpretability in mental health research [13]. 

 

Deep Learning Methods for Mental Health Diagnosis 

Deep learning has emerged as a powerful subset of machine learning capable of extracting 

complex patterns from large, high-dimensional data such as medical images and 

neurophysiological recordings. Unlike conventional machine learning approaches that rely on 

handcrafted features, deep learning models automatically learn hierarchical representations directly 

from raw input data, enabling them to capture subtle and nonlinear relationships in brain imaging. 

In the context of mental health, these methods have been successfully applied across a range of 

modalities—MRI, fMRI, PET, and EEG—to aid in diagnosis, prognosis, and biomarker discovery. 

 
Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks are the most widely used architecture for image-based 

applications. CNNs employ convolutional and pooling layers to hierarchically extract spatial 

features, making them particularly effective for analyzing 2D and 3D medical images. In 

psychiatric neuroimaging, CNNs have been applied to structural MRI for identifying 

morphological abnormalities in schizophrenia and depression, as well as to fMRI for detecting 

altered functional connectivity patterns. For example, 3D CNN models trained on MRI scans have 

achieved high classification accuracy in differentiating individuals with major depressive disorder 

from healthy controls, outperforming traditional voxel-based morphometry methods [14,15] 

 

Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) Networks 

RNNs are designed to handle sequential data by maintaining temporal dependencies across time 

steps. Their extension, Long Short-Term Memory (LSTM) networks, overcomes the vanishing 

gradient problem and is well suited for time-series neuroimaging and electrophysiological data 

such as EEG and fMRI. In mental health research, RNNs and LSTMs have been used to model 

temporal brain activity fluctuations, enabling the prediction of dynamic functional connectivity 

and disease states over time. These approaches are particularly valuable for disorders characterized 

by altered temporal synchronization, such as schizophrenia and bipolar disorder [17]. 

 
Autoencoders and Variational Autoencoders (VAEs) 

Autoencoders are unsupervised neural networks that learn efficient low-dimensional 

representations of input data by reconstructing it through an encoder-decoder framework. 

Variational autoencoders (VAEs) extend this concept by introducing probabilistic modeling, which 

helps capture latent features useful for anomaly detection and feature compression. In mental 

health imaging, autoencoders have been utilized for denoising MRI scans, reducing dimensionality 
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of fMRI data, and discovering latent biomarkers that differentiate patients from healthy subjects. 

Such models enable unsupervised learning from limited labeled data, a common constraint in 

psychiatric datasets [17]. 

 
Transformer Models 

Transformers, originally developed for natural language processing, have recently gained attention 

in medical imaging due to their ability to model long-range dependencies using self-attention 

mechanisms. Vision Transformers (ViTs) and hybrid CNN-Transformer architectures have shown 

strong performance in analyzing MRI and EEG data for neurological and psychiatric disorders. 

Transformers can effectively capture both global and local patterns in brain images and are 

increasingly being explored for multimodal fusion—combining imaging data with clinical or 

genetic information to improve diagnostic robustness [18]. 

 

Applications for Specific Mental (and Related Neuropsychiatric) Disorders 

Deep learning has been deployed across structural MRI (sMRI), functional MRI (fMRI), 

PET/SPECT, and EEG/MEG to detect disorder-specific brain signatures, stratify subtypes, and 

support prognosis. Below, we summarize representative applications and lessons learned. 

 

Major Depressive Disorder (MDD) 

CNNs on sMRI and resting-state fMRI have been used to capture morphology and connectivity 

alterations in cortico-limbic circuits (e.g., hippocampus, subgenual cingulate, medial prefrontal 

regions). 3D CNNs trained on T1-weighted MRI reported competitive diagnostic accuracy versus 

classical voxel-based pipelines, while fMRI models that learn graph or spatiotemporal 

representations reveal disrupted default-mode and salience network interactions. Despite good 

cross-validation results, cross-site generalization remains challenging due to scanner and cohort 

heterogeneity [19]. 

 

Schizophrenia 

For schizophrenia, deep models frequently use connectivity graphs derived from fMRI and 

diffusion imaging, analyzed with GNNs/GCNs to identify dysconnectivity across fronto-temporal 

and default-mode systems. CNNs on sMRI also capture cortical thinning and subcortical volume 

differences. Reviews consistently report AUCs in the 0.70–0.90 range within site, with 

performance drops across sites; interpretability (e.g., relevance propagation, saliency) helps 

localize contributory regions and edges [20]. 

 

Bipolar Disorder 

Bipolar disorder applications often fuse multimodal information—sMRI morphology, resting-state 

connectivity, and sometimes diffusion or spectroscopy—to separate bipolar from schizophrenia 

and unipolar depression. Hybrid CNN–RNN and attention-based models leverage both spatial and 

temporal patterns; nevertheless, label noise (episodic states, medication effects) and small cohorts 

hinder robustness. Domain adaptation and harmonization are active needs [21]. 
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Autism Spectrum Disorder (ASD) 

Large multi-site initiatives like ABIDE have enabled deep learning at scale. CNNs and 

autoencoders trained on sMRI/fMRI detect ASD-related alterations in default-mode, salience, and 

social cognition networks. Notably, site variability and age effects require careful confound 

control; nevertheless, end-to-end and representation-learning approaches (e.g., denoising 

autoencoders) have shown reproducible gains over handcrafted features [22]. 

 

Alzheimer’s Disease / Mild Cognitive Impairment (MCI) 

Although neurodegenerative rather than strictly psychiatric, AD/MCI studies are methodologically 

relevant. 3D CNNs and Transformer-based models on sMRI and PET learn atrophy and 

hypometabolism patterns. Multimodal fusion (PET+MRI) and transfer/self-supervised learning 

boost early-stage detection and MCI-to-AD conversion prediction, illustrating how multimodal 

pipelines can translate into psychiatric contexts [23]. 

 

Conclusion  

Deep learning has become a transformative tool in the analysis of medical imaging for mental 

health disorder diagnosis. By automatically learning hierarchical and complex representations from 

high-dimensional neuroimaging data, deep learning models have achieved significant progress in 

detecting structural and functional brain abnormalities associated with disorders such as 

depression, schizophrenia, bipolar disorder, autism spectrum disorder, and Alzheimer’s disease. 

Across modalities—from MRI and fMRI to PET and EEG—these approaches have demonstrated 

their ability to reveal hidden neural signatures that traditional methods often fail to capture. 

Despite the impressive advancements, several challenges remain before deep learning can be fully 

integrated into clinical psychiatry. Limited and imbalanced datasets, differences in imaging 

protocols across sites, and the “black-box” nature of many deep models hinder generalizability and 

clinical trust. Moreover, ethical concerns surrounding data privacy, bias, and interpretability 

emphasize the need for transparent and explainable AI systems. Addressing these issues requires 

larger, standardized datasets, advanced harmonization techniques, and collaboration between 

computer scientists, clinicians, and neuroscientists. 

 

Looking forward, the future of deep learning in mental health imaging lies in multimodal 

integration, self-supervised learning, and explainable AI. Combining imaging data with genetic, 

behavioral, and clinical information could lead to more holistic models of psychiatric illness. As 

these technologies mature, deep learning has the potential not only to enhance diagnostic accuracy 

but also to reshape our understanding of the biological foundations of mental health, leading 

toward truly personalized and data-driven psychiatry. 
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