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Abstract

Mental health disorders such as depression, schizophrenia, and bipolar disorder remain difficult to diagnose
objectively. Medical imaging techniques—such as MRI, fMRI, PET, and EEG—offer valuable insights into brain
structure and function, revealing biomarkers linked to psychiatric conditions. Deep learning has recently transformed
the analysis of these complex data by automatically extracting meaningful features from high-dimensional images.
This review summarizes recent advances in applying deep learning models, including convolutional, recurrent, and
graph neural networks, to mental health diagnosis. It highlights key imaging modalities, representative applications,
and current limitations such as small datasets and limited interpretability. Emerging directions, including multimodal
fusion and explainable Al, promise to enhance clinical reliability and understanding. Deep learning thus holds strong
potential for improving early detection and personalized treatment in mental health care.
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Introduction

Mental health disorders such as depression, schizophrenia, bipolar disorder, and autism spectrum
disorder represent a significant global health burden, affecting hundreds of millions of individuals
worldwide. These conditions often lead to considerable personal suffering, social impairment, and
economic costs. Despite their prevalence, the diagnosis of mental health disorders remains largely
dependent on clinical interviews, behavioral assessments, and subjective symptom reporting. Such
approaches are prone to variability between clinicians and may fail to capture the underlying
neurobiological mechanisms of these disorders [1]. Recent advances in medical imaging have
opened new possibilities for objective and quantitative assessment of brain structure and function.
Techniques such as magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission
tomography (PET), and electroencephalography (EEG) provide detailed insights into the brain’s
anatomy, activity, and connectivity patterns. These imaging modalities have revealed subtle but
consistent neural alterations associated with various psychiatric conditions, offering the potential
for early diagnosis and personalized treatment planning [2].
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Figure IMRI of the brains of a pair of identical twins. The one on the right has OCD, while the one on the left does not [3].

However, analyzing these high-dimensional and complex imaging data presents significant
challenges. Traditional statistical and machine learning methods often require manual feature
extraction and struggle to model the nonlinear relationships inherent in neuroimaging data. In
contrast, deep learning has emerged as a transformative approach capable of automatically learning
hierarchical and discriminative representations from raw images or signals. Convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and graph neural networks (GNNs) have
shown remarkable success in pattern recognition tasks across diverse imaging modalities [4-7]. In
the context of mental health, deep learning models have demonstrated promising results in
detecting structural and functional abnormalities, identifying biomarkers, and differentiating
between patient subgroups. These techniques can uncover complex brain signatures linked to
psychiatric symptoms, advancing our understanding of mental illnesses beyond traditional
diagnostic frameworks. Despite this progress, several barriers—such as limited dataset sizes, inter-
site variability, and lack of model interpretability—still hinder clinical deployment.

This short review aims to summarize recent developments in the application of deep learning
techniques to medical imaging for mental health disorder diagnosis. It highlights commonly used
imaging modalities, key deep learning architectures, representative studies on major psychiatric
conditions, and current challenges and future research directions in this rapidly evolving field.

Common Imaging Modalities Used in Mental Health Diagnosis

Medical imaging plays a pivotal role in investigating the structural, functional, and metabolic
abnormalities associated with mental health disorders. Each modality provides unique insights into
the brain’s organization and activity, supporting data-driven diagnostic and predictive modeling.
The following are the most commonly used imaging techniques in deep learning—based psychiatric
research.
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Structural Magnetic Resonance Imaging (sMRI)

Structural MRI is widely employed to examine brain anatomy and detect morphological
abnormalities in psychiatric disorders. It provides high-resolution images of gray and white matter,
allowing the measurement of cortical thickness, surface area, and volumetric changes in specific
brain regions. Studies have shown that patients with depression or schizophrenia often exhibit
reduced gray matter volume in the prefrontal cortex and hippocampus. Deep learning methods,
particularly 3D convolutional neural networks (3D CNNs), have been used to automatically extract
structural features from sMRI for the classification of mental disorders. These models outperform
traditional feature-based approaches by learning spatially distributed biomarkers directly from
imaging data [8,9].

Functional Magnetic Resonance Imaging (fMRI)

Functional MRI measures blood-oxygen-level-dependent (BOLD) signals to assess brain activity
and functional connectivity patterns. It is particularly useful for identifying disrupted brain
networks in mental illnesses such as major depressive disorder, schizophrenia, and autism
spectrum disorder. Deep learning models applied to fMRI data often focus on learning
spatiotemporal patterns that represent brain dynamics. Recurrent neural networks (RNNs) and
graph convolutional networks (GCNs) have been used to model these complex functional
interactions. For instance, GNN-based frameworks can represent brain regions as nodes and their
connectivity as edges, enabling the discovery of altered communication pathways in patients with
psychiatric conditions [10].

Positron Emission Tomography (PET) and Single-Photon Emission Computed Tomography
(SPECT)

PET and SPECT imaging techniques provide valuable information about cerebral metabolism,
neurotransmitter activity, and receptor binding. These modalities are especially informative for
disorders involving neurochemical imbalances, such as depression, Alzheimer’s disease, and
schizophrenia. Deep learning approaches, including CNNs and autoencoders, have been utilized to
identify metabolic signatures and predict disease progression. Moreover, hybrid PET/MRI systems
enable multimodal deep learning models to jointly analyze metabolic and structural information,
improving diagnostic accuracy [11].

Electroencephalography (EEG) and Magnetoencephalography (MEG)

EEG and MEG record brain activity with high temporal resolution, making them suitable for
studying dynamic neural oscillations in psychiatric disorders such as attention-deficit/hyperactivity
disorder (ADHD), depression, and anxiety. Deep learning models, particularly convolutional and
recurrent architectures, have been applied to EEG signals for emotion recognition, stress detection,
and early diagnosis of mental health abnormalities. By automatically extracting temporal and
spectral features, these models have demonstrated improved classification accuracy compared to
conventional signal-processing methods [12].
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Multimodal Imaging

Combining multiple imaging modalities provides a more comprehensive understanding of the
brain’s structure and function. For example, integrating sSMRI and fMRI allows simultaneous
analysis of both anatomical and functional abnormalities, while fusion with EEG or PET data
enhances sensitivity to neurochemical and electrophysiological changes. Multimodal deep learning
frameworks—such as hybrid CNN-RNN or attention-based fusion models—have shown great
potential in improving diagnostic performance and interpretability in mental health research [13].

Deep Learning Methods for Mental Health Diagnosis

Deep learning has emerged as a powerful subset of machine learning capable of extracting
complex patterns from large, high-dimensional data such as medical images and
neurophysiological recordings. Unlike conventional machine learning approaches that rely on
handcrafted features, deep learning models automatically learn hierarchical representations directly
from raw input data, enabling them to capture subtle and nonlinear relationships in brain imaging.
In the context of mental health, these methods have been successfully applied across a range of
modalities—MRI, fMRI, PET, and EEG—to aid in diagnosis, prognosis, and biomarker discovery.

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks are the most widely used architecture for image-based
applications. CNNs employ convolutional and pooling layers to hierarchically extract spatial
features, making them particularly effective for analyzing 2D and 3D medical images. In
psychiatric neuroimaging, CNNs have been applied to structural MRI for identifying
morphological abnormalities in schizophrenia and depression, as well as to fMRI for detecting
altered functional connectivity patterns. For example, 3D CNN models trained on MRI scans have
achieved high classification accuracy in differentiating individuals with major depressive disorder
from healthy controls, outperforming traditional voxel-based morphometry methods [14,15]

Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) Networks

RNNSs are designed to handle sequential data by maintaining temporal dependencies across time
steps. Their extension, Long Short-Term Memory (LSTM) networks, overcomes the vanishing
gradient problem and is well suited for time-series neuroimaging and electrophysiological data
such as EEG and fMRI. In mental health research, RNNs and LSTMs have been used to model
temporal brain activity fluctuations, enabling the prediction of dynamic functional connectivity
and disease states over time. These approaches are particularly valuable for disorders characterized
by altered temporal synchronization, such as schizophrenia and bipolar disorder [17].

Autoencoders and Variational Autoencoders (VAEs)

Autoencoders are unsupervised neural networks that learn efficient low-dimensional
representations of input data by reconstructing it through an encoder-decoder framework.
Variational autoencoders (VAEs) extend this concept by introducing probabilistic modeling, which
helps capture latent features useful for anomaly detection and feature compression. In mental
health imaging, autoencoders have been utilized for denoising MRI scans, reducing dimensionality
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of fMRI data, and discovering latent biomarkers that differentiate patients from healthy subjects.
Such models enable unsupervised learning from limited labeled data, a common constraint in
psychiatric datasets [17].

Transformer Models

Transformers, originally developed for natural language processing, have recently gained attention
in medical imaging due to their ability to model long-range dependencies using self-attention
mechanisms. Vision Transformers (ViTs) and hybrid CNN-Transformer architectures have shown
strong performance in analyzing MRI and EEG data for neurological and psychiatric disorders.
Transformers can effectively capture both global and local patterns in brain images and are
increasingly being explored for multimodal fusion—combining imaging data with clinical or
genetic information to improve diagnostic robustness [18].

Applications for Specific Mental (and Related Neuropsychiatric) Disorders

Deep learning has been deployed across structural MRI (sMRI), functional MRI (fMRI),
PET/SPECT, and EEG/MEG to detect disorder-specific brain signatures, stratify subtypes, and
support prognosis. Below, we summarize representative applications and lessons learned.

Major Depressive Disorder (MDD)

CNNs on sMRI and resting-state fMRI have been used to capture morphology and connectivity
alterations in cortico-limbic circuits (e.g., hippocampus, subgenual cingulate, medial prefrontal
regions). 3D CNNs trained on T1-weighted MRI reported competitive diagnostic accuracy versus
classical voxel-based pipelines, while fMRI models that learn graph or spatiotemporal
representations reveal disrupted default-mode and salience network interactions. Despite good
cross-validation results, cross-site generalization remains challenging due to scanner and cohort
heterogeneity [19].

Schizophrenia

For schizophrenia, deep models frequently use connectivity graphs derived from fMRI and
diffusion imaging, analyzed with GNNs/GCNs to identify dysconnectivity across fronto-temporal
and default-mode systems. CNNs on sMRI also capture cortical thinning and subcortical volume
differences. Reviews consistently report AUCs in the 0.70-0.90 range within site, with
performance drops across sites; interpretability (e.g., relevance propagation, saliency) helps
localize contributory regions and edges [20].

Bipolar Disorder

Bipolar disorder applications often fuse multimodal information—sMRI morphology, resting-state
connectivity, and sometimes diffusion or spectroscopy—to separate bipolar from schizophrenia
and unipolar depression. Hybrid CNN-RNN and attention-based models leverage both spatial and
temporal patterns; nevertheless, label noise (episodic states, medication effects) and small cohorts
hinder robustness. Domain adaptation and harmonization are active needs [21].
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Autism Spectrum Disorder (ASD)

Large multi-site initiatives like ABIDE have enabled deep learning at scale. CNNs and
autoencoders trained on SMRI/fMRI detect ASD-related alterations in default-mode, salience, and
social cognition networks. Notably, site variability and age effects require careful confound
control; nevertheless, end-to-end and representation-learning approaches (e.g., denoising
autoencoders) have shown reproducible gains over handcrafted features [22].

Alzheimer’s Disease / Mild Cognitive Impairment (MCI)

Although neurodegenerative rather than strictly psychiatric, AD/MCI studies are methodologically
relevant. 3D CNNs and Transformer-based models on sMRI and PET learn atrophy and
hypometabolism patterns. Multimodal fusion (PET+MRI) and transfer/self-supervised learning
boost early-stage detection and MCI-to-AD conversion prediction, illustrating how multimodal
pipelines can translate into psychiatric contexts [23].

Conclusion

Deep learning has become a transformative tool in the analysis of medical imaging for mental
health disorder diagnosis. By automatically learning hierarchical and complex representations from
high-dimensional neuroimaging data, deep learning models have achieved significant progress in
detecting structural and functional brain abnormalities associated with disorders such as
depression, schizophrenia, bipolar disorder, autism spectrum disorder, and Alzheimer’s disease.
Across modalities—from MRI and fMRI to PET and EEG—these approaches have demonstrated
their ability to reveal hidden neural signatures that traditional methods often fail to capture.
Despite the impressive advancements, several challenges remain before deep learning can be fully
integrated into clinical psychiatry. Limited and imbalanced datasets, differences in imaging
protocols across sites, and the “black-box™ nature of many deep models hinder generalizability and
clinical trust. Moreover, ethical concerns surrounding data privacy, bias, and interpretability
emphasize the need for transparent and explainable Al systems. Addressing these issues requires
larger, standardized datasets, advanced harmonization techniques, and collaboration between
computer scientists, clinicians, and neuroscientists.

Looking forward, the future of deep learning in mental health imaging lies in multimodal
integration, self-supervised learning, and explainable AI. Combining imaging data with genetic,
behavioral, and clinical information could lead to more holistic models of psychiatric illness. As
these technologies mature, deep learning has the potential not only to enhance diagnostic accuracy
but also to reshape our understanding of the biological foundations of mental health, leading
toward truly personalized and data-driven psychiatry.
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