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Abstract

Clear aligner therapy increasingly relies on accurate digital models to improve the predictability of complex tooth
movements; however, conventional workflows based on intraoral scans lack root and alveolar bone information that is
critical for biomechanical planning and risk assessment. Cone-beam computed tomography (CBCT) can provide this
anatomical detail but is limited in routine use by time-consuming segmentation, artifact management, and registration
processes. This mini review synthesizes current evidence on artificial intelligence (Al), particularly deep learning—based
frameworks, applied to CBCT image processing for clear aligner fabrication and digital orthodontic workflows. A
targeted literature search identified studies evaluating Al-driven CBCT segmentation, multimodal fusion with intraoral
scans, artifact handling, and clinically relevant applications such as root-aware planning, midpalatal suture maturation
staging, and automated assessment of orthodontically induced root resorption. Across predominantly retrospective and
laboratory-based studies published between 2021 and 2025, deep learning models—most commonly U-Net—based
architectures—demonstrated high segmentation accuracy (often exceeding 90%) while substantially reducing processing
time from hours to minutes. Multimodal CBCT—intraoral scan fusion emerged as a key advance for generating
anatomically complete crown—root—bone models that may enhance aligner planning and monitoring. Despite promising
technical performance, clinical translation remains constrained by small datasets, heterogeneous reference standards,
limited external validation, and a lack of prospective outcome-focused studies. Overall, Al-enabled CBCT processing
shows strong potential to streamline digital orthodontic workflows and improve anatomical fidelity in clear aligner
therapy, but further multi-center validation and clinical effectiveness studies are required before widespread adoption.
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Introduction

Clear aligner therapy has become a mainstream orthodontic modality because it is esthetic and
facilitates oral hygiene, yet complex movements (e.g., torque control, bodily root movement, and
transverse corrections) remain challenging and often require refinements [1-3]. In parallel, digital
manufacturing is rapidly shifting from thermoforming to direct 3D printing, which increases demand
for anatomically precise digital models and repeatable workflows [1,4-6]. Compared to fixed braces,
clear aligners often finish treatment several months faster and manage segmented tooth movements
better, although they showed weaker control over torque, posterior occlusal contacts, transverse
widening, and long-term stability [2].
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Most commercial aligner setups are based on surface geometry from intraoral scans (I0S). Surface
scans accurately represent crowns but lack information about roots and alveolar bone structures that
can constrain tooth movement, influence attachment design, and drive adverse events such as
dehiscence or external apical root resorption (10). Cone-beam computed tomography (CBCT)
provides a detailed three-dimensional visualization of dental and skeletal structures, enabling
assessment of crown morphology, root position, and alveolar bone architecture. CBCT is currently
the only practical clinical modality that captures these structures in 3D at chairside resolution [7].
However, conventional CBCT workflows require manual or semi-automatic segmentation, artifact
management, and registration between CBCT volumes and IOS meshes steps that can take hours
and may be difficult to reproduce [8]. CBCT-based analysis has revealed clinically relevant
discrepancies between predicted and achieved tooth movements in aligner therapy, particularly for
root apices and posterior teeth, highlighting the importance of incorporating root-level information
into treatment planning [9-11]. As direct aligner printing becomes more widespread, demand has
increased for automated, fast, and anatomically precise CBCT processing pipelines capable of
supporting real-time clinical decision-making.

In this context, artificial intelligence (AI), particularly deep learning (DL), has emerged as a
promising approach for automated CBCT segmentation, landmark detection, multimodal data
fusion, and treatment outcome prediction [12]. In medical imaging, DL is commonly implemented
with CNN-based models; U-Net variants are widely used for segmentation, and transformer-based
approaches are increasingly adopted for capturing global 3D context [12]. Recent studies suggest
that DL-based frameworks can substantially reduce manual processing time while maintaining high
segmentation accuracy, potentially enabling real-time or near-real-time reconstruction of crown—
root—bone models for aligner fabrication [8,13,14]. Despite this rapid technical progress, the extent
to which these systems are clinically validated and ready for routine orthodontic application remains
unclear.

Therefore, the aim of this mini review is to synthesize current evidence on deep learning—based real-
time CBCT image processing frameworks and evaluate their performance, clinical relevance, and
limitations within the context of clear aligner fabrication and digital orthodontic workflows.

Methods and Materials

We performed a targeted literature review to discover publications evaluating the use of Al to CBCT
for activities relevant to clear aligner processes, including tooth, root, and bone segmentation or
reconstruction, management of CBCT artifacts, and multimodal fusion or registration of CBCT with
IOS. Searches were performed in PubMed, MEDLINE, Scopus, Web of Science, and Google
Scholar up to December 2025 using combinations of keywords and synonyms related to CBCT,
orthodontics/aligners, segmentation, registration/fusion, and deep learning (including “CBCT” AND
“tooth segmentation” OR “root segmentation” OR “alveolar bone” OR “U-Net” OR “deep learning”
OR “multimodal fusion” OR “registration” AND “clear aligner” OR “orthodontic’). Reference lists
of included articles and relevant reviews were also screened to capture additional studies.

Eligibility criteria included original research reporting Al-based analysis of CBCT volumes for
segmentation/reconstruction of teeth/roots/bone, CBCT—-IOS fusion or registration, or CBCT-based
Al applications used to support aligner planning, monitoring, or assessment of adverse events. The



International Journal of Applied Data Science in Engineering and Health 3

exclusion criteria contained studies that did not utilize CBCT imaging, used purely non-Al
methodologies, focused exclusively on non-orthodontic applications unrelated to aligner workflows,
consisted of editorials or opinion pieces, and included duplicates.

Titles and abstracts were screened, followed by full-text review to confirm eligibility. From each
included study, we extracted the clinical task, dataset type and size, imaging inputs (CBCT/IOS),
model family (such as CNN, U-Net, transformer), reference standard, evaluation metrics (such as
Dice, IoU, AUC, ICC), and processing time when reported. Given heterogeneity in datasets,
outcomes, and reporting, findings were synthesized qualitatively and organized by workflow stage
with emphasis on reported performance and barriers to clinical translation.

Results

The final selection comprised a limited number of studies directly addressing deep learning—based
processing of CBCT data for applications relevant to clear aligner therapy (Table 1). Most eligible
studies were published between 2021 and 2025 and consisted primarily of retrospective or
laboratory-based investigations. Only a small number included prospective clinical data. The
dominant research themes included automated segmentation of dental structures, multimodal fusion
of CBCT and intraoral scans, and predictive modeling of orthodontic outcomes. Sample sizes varied
substantially across studies, and reporting of dataset composition, annotation protocols, and
validation strategies was heterogeneous.

Segmentation Accuracy and Model Performance

Across studies summarized in Table 1, deep learning models consistently demonstrated high
accuracy for automated segmentation of dental and skeletal structures from CBCT volumes.
Multimodal deep learning systems integrating CBCT and intraoral scans achieved Dice similarity
coefficients typically above 90%, with Jin et al. reporting Dice values of 94% for full crown-root—
bone reconstruction, while reducing processing time from approximately five hours of manual work
to about 20 minutes [15].

Deleat-Besson et al. similarly showed effective machine learning-based segmentation of dental root
canals integrated with crown morphology, facilitating the generation of anatomically full tooth
models appropriate for aligner design [16]. Zheng et al. exhibited intraclass correlation values
surpassing 0.95 for volumetric root measurements in root resorption analysis, with automated
classification accuracy reaching 0.8 for the severity grading of orthodontically caused root
resorption[17].

Most segmentation pipelines utilize convolutional neural network designs, especially U-Net
variations. Recent research has increasingly adopted multimodal and hybrid deep learning
frameworks to enhance resilience under varying imaging circumstances.

Multimodal Fusion and Registration
Multimodal fusion of CBCT data with intraoral surface scans represented a central methodological

trend (Table 1). D’Alessandro et al. and Jin et al. demonstrated that deep learning—based fusion
frameworks enable automatic registration of root and bone information from CBCT with high-
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resolution crown surfaces from IOS [15,18]. These systems facilitated the construction of
anatomically complete digital models and supported the realistic simulation of complex root
movements and torque control that cannot be achieved using surface scans alone.

In addition to orthodontic applications, CBCT-based fusion and registration approaches were
extended to other dental fields. Fan et al. applied mixed-reality navigation based on CBCT
registration for implant placement, achieving spatial deviations of approximately 1.5 mm,
illustrating the broader feasibility of real-time CBCT processing in clinical environments [19].

Clinical Applications in Clear Aligner Workflows

Several studies applied Al-driven CBCT analysis to clinically relevant aligner workflows (Table 1).
Wang et al. introduced a multimodal deep learning system (DeepMSM) for staging midpalatal suture
maturation using CBCT data, reporting classification accuracy of approximately 85%, exceeding the
performance of junior clinicians and supporting improved timing of expansion prior to aligner
therapy [20].

Predictive modeling was also explored. Li et al. developed a machine learning model for forecasting
open gingival embrasures after aligner treatment, achieving an area-under-the-curve value of 0.88
based on treatment-planning variables and patient characteristics [21]. Ruiz et al., in a large scoping
review, reported segmentation accuracies approaching 98% across commercial and experimental Al
systems, confirming the rapid expansion of Al-driven digital setups in orthodontics [13]. Although
Shangyou et al. used CBCT superimposition without Al their findings highlighted the limited
predictability of certain aligner movements, particularly posterior extrusion, reinforcing the need for
more advanced Al-based biomechanical modeling [22].

Evidence Gaps and Validation Limitations

Despite strong technical performance documented in several studies, clinical validation is still
limited. Most studies depended on limited or institution-specific datasets and lacked external
validation. The evaluation measures, annotation standards, and reference methods exhibited
significant variability, limiting direct comparisons among models. Few prospective clinical studies
evaluated patient outcomes, therapeutic efficacy, and long-term safety. Moreover, while several
studies have indicated near-real-time processing rates, the practical use in standard orthodontic
practice remains predominantly unverified, and the regulatory frameworks for the clinical
installation of Al-driven CBCT systems are not yet distinctly defined.

Discussion

This mini review indicates that deep learning—enabled CBCT processing is progressing toward
clinically relevant performance for clear aligner workflows. Clear aligner therapy has become
widely used due to esthetics and oral-hygiene advantages, yet biomechanical limitations and variable
predictability, particularly for complex movements, remain well recognized in the broader aligner
literature [23,24].
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Across the included studies, the most consistent signal is that Al can substantially reduce the time
and operator burden associated with CBCT segmentation and model reconstruction while
maintaining high quantitative performance. In particular, multimodal fusion approaches that
integrate CBCT with intraoral scans appear to address a central limitation of surface-only digital
setups by combining high-resolution crown morphology with root and alveolar bone information,
enabling the generation of anatomically complete models within clinically practical time frames
[13,15,16]. In particular, multimodal fusion approaches that integrate CBCT with intraoral scans
help address a key limitation of surface-only setups by combining high-resolution crown
morphology with root and alveolar bone information, supporting anatomically complete models

within clinically practical time frames [15,16,18].

Table 1. Review of CBCT, artificial intelligence, and clear aligners.

Study ID Year | Technology Focus CBCT Use ClearRz(;l;gner Key Result
Mixed Reality . Implant path 1.5 mm accuracy with
Fanetal T19] | 2023 navigation Pre-op planning guidance HoloLens
D’Alessandro CBCT +1I0S Root + bone Accurate r.oot Successful complex root
2023 . . . torque with
et al. [18] fusion imaging . movement
aligners
- . Predict open .
Lietal [21] 2025 ML prediction No (ClinCheck gingival AUC 0.88 combined
model only) nomogram
embrasures
: - - — 5
Ruiz etal. [13] | 2025 Al in clear aligner Some studies Segmentgtlot}, Al rising, 98% seg.
therapy setup, monitoring accuracy
Wang et al. . . o .
(DeepMSM) | 2025 Multimodal DL MPS staging Ind1reTt (e{(pansmn 85% aceuracy > junior
[20] planning) clinicians
Jin et al. 2022 Multimodal DL Full tooth-bone Crlj‘;gi;fsgf_lggne Dice 94%, 20 min vs 5h
(DDMA) [15] CBCTHIOS fusion segmentation model manual
5 =
CBCT Quantifying tooth 52.9% predlctablhty of
Shangyou et al. . .. Pre-/post- . Curve of Spee leveling;
2025 superimposition movements with . .
[22] treatment CBCT . substantial posterior
(non-Al) aligners .
overtreatment required
Deep learning Full CBCT-based Root resorption ICC >0.95; agtomgﬂc
Zheng et al. . . OIRR detection with
[17] 2025 OIRR 3D root volume | monitoring during >0.8 severity
quantification analysis aligner therapy classification accuracy
Supports aliener Automated root-canal
ML root-canal CBCT root canal PP¢ 18 segmentation +
Deleat-Besson . . planning via root
2021 segmentation + segmentation + crown/root model
etal. [16] . . anatomy . . .
crown merging IOS crown fusion L integration for improved
visualization .
root-position awareness

Note: Al: Artificial Intelligence; ML: Machine Learning; DL: Deep Learning; CBCT: Cone-Beam Computed Tomography; 10S:
Intraoral Scan; MPS: Midpalatal Suture; CVM: Cervical Vertebral Maturation; MTM: Mandibular Third Molar; AUC: Area Under
Curve; Dice: Dice Similarity Coefficient, loU: Intersection over Union, mloU: mean Intersection over Union;, OGE: Open Gingival
Embrasure; LASSO: Least Absolute Shrinkage and Selection Operator; ABO: American Board of Orthodontics; DDMA: Deep Dental
Multimodal Analysis;, DeepMSM: Deep Midpalatal Suture Maturation model.
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From a clinical perspective, the most immediately applicable use cases for Al-driven CBCT analysis
appear to be root-aware planning and risk monitoring in situations where CBCT is clinically
justified. Automated three-dimensional quantification of orthodontically induced root resorption has
been demonstrated with high reliability and clinically relevant severity classification performance,
supporting standardized monitoring of an adverse event that remains a concern in aligner therapy
[10,17]. In addition, multimodal CBCT-based models have been applied to diagnostic staging tasks
that can influence treatment timing, such as midpalatal suture maturation staging [25].

At the workflow level, the broader scoping literature describes expanding Al adoption across
segmentation, digital setup, monitoring, and prediction, while emphasizing that true end-to-end
automation remains uneven across commercial and academic systems [13,26]. Complementary
orthodontic and biomechanical studies also underscore why improved anatomical modeling matters:
CBCT-based assessments have shown discrepancies between planned and achieved tooth movement
and have provided quantitative movement evaluation, while finite element studies continue to refine
force systems and attachment design in aligner biomechanics [27-30]. In parallel, “Al outside
CBCT” is rapidly entering aligner care through treatment outcome prediction, remote monitoring,
and workflow support. Machine-learning prediction of outcomes and complications (for example,
open gingival embrasures and treatment outcome prediction) and Al-based remote monitoring have
been reported, although these tools require careful clinical oversight and validation [31-33]. Broader
perspectives on Al-supported aligner technology and clinical integration further reinforce that
imaging, biomechanics, and monitoring must be evaluated as a connected system rather than isolated
modules [34,35].

Significant evidence gaps remain. Much research on CBCT/ALI are either retrospective or laboratory-
based, lacking external validation and exhibiting inconsistent annotation standards and performance
reporting, which restricts comparability and generalizability. Secondly, the quality of real-world
CBCT is inconsistent (due to motion, metal artifacts, and variations in voxel size), and models
developed on curated datasets can lose performance without domain adaption and strict quality
assurance. The clinical advantages includes more than just technical accuracy; it depends on
provable enhancements in significant outcomes, like reduced refinements, enhanced predictability
of root control, reduced adverse events, and quantifiable efficiency, all while maintaining safety
standards. Safety and materials considerations also remain relevant as aligner manufacturing
evolves. Systematic reviews and materials-focused analyses have raised ongoing questions about
polymer behavior and potential chemical release, and evidence in growing patients remains
comparatively limited, issues that become more critical when new printable resins and
manufacturing pathways are introduced [3-6,36,37]. Finally, although not aligner-specific, mixed-
reality CBCT registration work in implant navigation illustrates the broader feasibility of near-real-
time CBCT-based guidance systems, which may inform future orthodontic implementations [14].

Future research would benefit from multi-center datasets with transparent curation and governance;
standardized benchmarking protocols (including external validation across scanners); and
prospective clinical studies that quantify downstream impacts on treatment planning decisions,
workflow time, and patient-centered outcomes [13,38]. As the field continues to mature, emerging
perspectives propose expanding Al-driven CBCT interpretation to better capture biological
variability and material-related uncertainty across digital orthodontic workflows [39,40].
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