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Abstract 

 

A few recent neuroimaging studies reported the role of amygdala connectivity in patients with schizophrenia. 

However, thus far in the fMRI literature, the predictive capability of amygdala connectivity in classifying 

schizophrenia patients and controls has not been explored using advanced machine learning techniques. In this brief 

report, we present results from analysis utilizing classification methods based on deep neural networks and 

convolutional neural networks for predicting schizophrenia versus healthy control using the amygdala’s connectivity 

to other brain regions. Median accuracy rates of 62.9%, 60%, and 60% were obtained for classification based on a 

deep neural network, convolutional neural network, and ResNet34 architectures, respectively. 
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Introduction 

Amygdala, with its functional and structural connections to multiple cortical and subcortical 

regions, is well-known to play a significant role in a large number of behavioral processes [1]. For 

example, amygdala-median prefrontal cortex (mPFC) circuitry plays a role in the conditioning and 

extension of averse learning in animals as well as in regulating emotional paradigms in humans 

[2]. The interaction between the bottom-up and top-down response-control processes arising as a 

result of such amygdala-mPFC connections, is posited to be impaired in many psychiatric illnesses 

[2] including schizophrenia [3]. In fact, amygdala abnormality has been long known [4] and 

repeatedly reported in schizophrenia. Structurally, meta-analyses consistently found smaller 

amygdala volume in schizophrenia [5-7]. Functionally, the amygdala in schizophrenia has been 

repeatedly found to be less activated during emotional tasks [8]. Amygdala abnormality in 

schizophrenia is established. Amygdala dysfunctions can at least partly account for the symptoms 

of schizophrenia.  
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A few recent neuroimaging studies reported the role of amygdala connectivity in patients with 

schizophrenia. Using functional MRI (fMRI) comparing patients (n = 20) and controls (n = 24), 

Mukherjee and co-authors [9], reported impaired amygdala connectivity with other parts of social 

brain networks in schizophrenia. In a recent study [10] based on resting state (rs) fMRI, individuals 

with attenuated psychosis syndrome showed hyperconnectivity between three amygdala 

subregions and certain cortical subregions compared to healthy controls. Another rs-fMRI study 

[11] showed different patterns of functional connectivity impairment in the amygdala and 

hippocampal neural circuits in the schizophrenic cortical-limbic system. Guo and coauthors [12], 

using the rs-fMRI technique showed abnormal volume and function of the amygdala play 

important roles in the disease process of schizophrenia. Zheng and coauthors [13], using rs-fMRI 

showed significant dysfunction in the amygdala in schizophrenia which did not improve with 

treatment. Evidence for altered functional connectivity of the amygdala during threat anticipation 

in schizophrenia [14] has also been presented. Hyperconnectivity between amygdala and the visual 

cortex has been associated with visual hallucinations in patients with schizophrenia as well [15]. 

However, thus far in the fMRI literature, the predictive capability of amygdala connectivity in 

classifying schizophrenia patients and controls has not been explored using advanced machine 

learning techniques. In this study, we attempted to classify based on functional connectivity of the 

amygdala in schizophrenia and healthy controls, using deep neural networks (DNNs) and 

convolutional neural networks (CNNs). 

Methods 

The predictor data consisted of rs-fMRI data tensors of shape 91 x 109 x 91 where each voxel 

represented Z-score of connectivity to amygdala. The MRI images and the target binary 

classification variable from the Center for Biomedical Research Excellence in Brain Function and 

Mental Illness [16] were obtained from Collaborative Informatics and Neuroimaging Suite 

(http://coins.mrn.org/).  Excluding the bipolar patients from the original sample resulted in a total 

of 173 subjects for the current analysis, with 90 control subjects and 83 patients with schizophrenia 

or schizoaffective disorder. Resting state echo planner image (EPI) volumes had 32 slices of 4 mm 

64x64 matrix with 4-mm thickness (voxel size = 3x3x4 mm), with repetition time (TR) of 2000 

milliseconds and echo time (TE) of 29 milliseconds. A total of 150 volumes (5 minutes) were used 

in the analysis. High-resolution structural T1 volume was acquired as 176 sagittal slices of 256 

mm x 256 mm with 1-mm thickness (voxel size = 1x1x1 mm, TR=2530 milliseconds and TE=3.25 

milliseconds). Data preprocessing was conducted using FMRIB Software Library (FSL) using 

procedures very similar to the steps described in [17].  

FMRIB Software Library (FSL,) as well as Analysis of Functional NeuroImages (AFNI) were 

used for data preprocessing. The structural T1 volume for each subject was skull stripped, 

segmented (gray matter, white matter and CSF), and registered to the MNI 2mm standard brain.  

After removing first four EPI volumes transient signal spikes were removed by de-spiking 

interpolation. Head motion was corrected by linearly registering all the volumes to the first 

volume, through which six motion parameters and displacement distance between two consecutive 

volumes were estimated. Each volume was regressed by white matter and cerebrospinal fluid 
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signal fluctuations as well as the six motion parameters. EPI volumes were smoothed with a 6mm 

FWHM Gaussian kernel, resampled and then spatially transformed, and aligned to the MNI 2mm 

standard brain space through which12 affine parameters were created between rs-fMRI volume 

and MNI152 2mm space, so that a seed ROI can later be registered to each individual rs-fMRI 

space. In order to detect excess motion, the root mean square deviation was calculated from motion 

correction parameters, at an r=40mm spherical surface using FSL’s rmsdiff tool  [18,19]. Volumes 

were removed if displacement distance exceeded the threshold (0.3mm)  (i.e., scrubbed) from 

further statistical analyses [20]. Functional connectivity of the amygrala was tested by by ADNI’s 

3dROIstats, testing every voxel in the whole brain tested using amygdala ROI defined by 

Harvard_Oxford atlas [21]. The Z-scores were calculated by AFNI’s 3dcalc, then registered to the 

MNI2mm space. Functions in the nibabel Python module were utilized to read in the images and 

convert them into tensors for neural network inputs. Python modules numpy and tensorflow and 

Keras API were utilized to further process the data and implement the neural network models.  

We present results from three different neural network architectures – 1) deep neural network 

(DNN), 2) a linear convolutional neural network (CNN) and 3) RESNET-34 which is a nonlinear 

CNN architecture. Our DNN consisted of 5 hidden layers with 4096 nodes in addition to input and 

output layers. Our linear CNN is an adaptation of the CNN architecture presented in chapter 14 in 

[22]. It consisted of two convolutional layers with batch normalization and max-pooling layers in 

between. The number of square filters (- of sizes 3 and 2, respectively-) in the first and second 

convolutional layers were 64 and 128.  The output from the second convolutional layer was 

flattened and then transitioned through 5 dense layers, each with 512 nodes. The dense layers were 

interspersed with dropout-regularization layers with 50% dropout-probability. ResNet-34 is the 

standard residual learning architecture with 34 layers containing 3 residual units that output 64 

feature maps, 4 residual units with 128 maps, 6 residual units with 256 maps, and 3 residual units 

with 512 maps.  The activation function used for all layers (convolutional and dense) in all three 

architectures was ReLU. The optimizer used for DNN was stochastic gradient descent (SGD), and 

for linear CNN and RESNET-34 was ‘Adam’, a variant of SGD. 30 epochs were used for training 

the first two architectures and 300 epochs used for the ResNet-34 architecture. Performance for all 

architectures was assessed using random-shuffle cross-validation (CV) with 25 iterations. For each 

iteration, the 173 samples were split randomly into training, validation and test sets of 120, 18 and 

35 samples respectively. Median and inter-quartile range (IQR) values of the accuracy rates are 

presented as results below. The Python codes and the jupyter-notebook output for all analyses are 

posted in ‘https://github.com/mjohn5/amygdalaconnectivity’. 

Results 

 The median accuracy rate (and IQR) of the DNN architecture based on 25 CV-iterations were 

62.9% (60.0%, 65.7%). The median accuracy rate for both the CNN and ResNet architectures was 

60.0% with corresponding IQRs being (57.1%, 62.9%) and (57.1%, 65.7%), respectively. The 

results are graphically represented in Fig. 1. 
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Figure Boxplots of accuracy rates based on the three neural network architectures for 25 cross-validation iterations. 

 

Discussion 

Our results show moderate predictive capability of amygdala connectivity for classifying 

schizophrenia patients and healthy controls. CNN and ResNet achitectures, although well-suited 

for images as inputs may not be ideal for connectivity matrices as inputs as in the current analysis, 

which may explain why the accuracy rates based on these two architectures are slightly lower 

compared to the DNN architecture. Our accuracy rates may also have been limited based on the 

sample size from a single site. The generalizability of our results based on training and testing with 

data from multiple sites will also be of interest for future research. 
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