A Shallow Review of Artificial Intelligence Applications in Brain Disease: Stroke, Alzheimer's, and Aneurysm
Keywords:
Brain Stroke, Alzheimer's disease, Aneurysm, Artificial Intelligence, Brain DisordersAbstract
Artificial Intelligence (AI) has emerged as a transformative tool in the field of neurology, offering innovative solutions for the diagnosis, treatment, and management of brain diseases. This review provides a focused examination of AI applications in three critical areas: stroke, Alzheimer's disease, and aneurysms. By analyzing recent advancements in machine learning algorithms, deep learning models, and neural networks, this paper highlights the significant impact of AI on improving diagnostic accuracy, predicting disease progression, and personalizing treatment plans. In the context of stroke, AI has been instrumental in enhancing imaging techniques and predicting patient outcomes. For Alzheimer's disease, AI-driven tools have shown promise in early detection and monitoring of disease progression through the analysis of neuroimaging and clinical data. In the case of aneurysms, AI applications have improved detection and risk assessment, facilitating timely and effective interventions. Despite these advancements, the review also addresses the ethical considerations, challenges, and limitations associated with the integration of AI in clinical practice. This shallow review aims to provide valuable insights for researchers, clinicians, and policymakers, fostering further exploration, and implementation of AI technologies in the management of brain diseases, and commercial platforms in brain disorders imaging.
References:
[1] Asadian S. Non-Small Cell Lung Cancer Genotype Prediction Utilizing Multiparametric Artificial Intelligence Investigations. Acad Radiol. 2024 Feb 1;31(2):684-5.
[2] Nafissi N, Heiranizadeh N, Shirinzadeh-Dastgiri A, Vakili-Ojarood M, Naseri A, Danaei M, Saberi A, Aghasipour M, Shiri A, Yeganegi M, Rahmani A. The Application of Artificial Intelligence in Breast Cancer.
[3] Minoo S, Ghasemi F. Automated Teeth Disease Classification using Deep Learning Models. Int J Appl Data Sci Eng Health. 2024 Sep 18;1(2):23-31.
[4] Afrazeh F, Shomalzadeh M. Revolutionizing Arthritis Care with Artificial Intelligence: A Comprehensive Review of Diagnostic, Prognostic, and Treatment Innovations. Int J Appl Data Sci Eng Health. 2024 Sep 10;1(2):7-17.
[5] Akhoondinasab M, Shafaei Y, Rahmani A, Keshavarz H. A Machine Learning-Based Model for Breast Volume Prediction Using Preoperative Anthropometric Measurements. Aesthetic Plast Surg. 2024 Feb;48(3):243-9.
[6] Mahmoudiandehkordi S, Yeganegi M, Shomalzadeh M, Ghasemi Y, Kalatehjari M. Enhancing IVF Success: Deep Learning for Accurate Day 3 and Day 5 Embryo Detection from Microscopic Images. Int J Appl Data Sci Eng Health. 2024 Aug 14;1(1):18-25.
[7] Abbasi H, Orouskhani M, Asgari S, Shomal Zadeh S. Automatic brain ischemic stroke segmentation with deep learning: A review. Neurosci Inform. 2023;3(4):100145. https://doi.org/10.1016/j.neuri.2023.100145
[8] National Institute of Neurological Disorders and Stroke. 2024. https://www.ninds.nih.gov/health-information/stroke
[9] Soun JE, Chow DS, Nagamine M, Takhtawala RS, Filippi CG, Yu W, Chang PD. Artificial intelligence and acute stroke imaging. Am J Neuroradiol. 2020. https://doi.org/10.3174/ajnr.A6883
[10] Liu Y, Wen Z, Wang Y, Zhong Y, Wang J, Hu Y, Zhou P, Guo S. Artificial intelligence in ischemic stroke images: Current applications and future directions. Front Neurol. 2024;15. https://doi.org/10.3389/fneur.2024.1418060
[11] Cui Y, Han D, Fan R, et al. Artificial intelligence applications in acute ischemic stroke. Chin J Acad Radiol. 2023;6:160-9. https://doi.org/10.1007/s42058-023-00129-6
[12] Pacchiano F, Tortora M, Criscuolo S, et al. Artificial intelligence applied in acute ischemic stroke: from child to elderly. Radiol Med. 2024;129:83-92. https://doi.org/10.1007/s11547-023-01735-1
[13] Zhang W, Li Y, Ren W, Liu B. Artificial intelligence technology in Alzheimer’s disease research. Intractable Rare Dis Res. 2023;12(4):208-12. https://doi.org/10.5582/irdr.2023.01091
[14] Pradhan N, Sagar S, Singh AS. Analysis of MRI image data for Alzheimer disease detection using deep learning techniques. Multimed Tools Appl. 2024;83:17729-52. https://doi.org/10.1007/s11042-023-16256-2
[15] Shastry KA, Sanjay HA. Artificial Intelligence Techniques for the effective diagnosis of Alzheimer’s Disease: A Review. Multimed Tools Appl. 2024;83:40057-92. https://doi.org/10.1007/s11042-023-16928-z
[16] Kozlov M. AI that reads brain scans shows promise for finding Alzheimer’s genes. Nature. 2023.
[17] Zhang F, Li Z, Zhang B, Du H, Wang B, Zhang X. Multi-modal deep learning model for auxiliary diagnosis of Alzheimer’s disease. Neurocomputing. 2019;361:185-95.
[18] Leming M, Das S, Im H. Adversarial confound regression and uncertainty measurements to classify heterogeneous clinical MRI in Mass General Brigham. PLoS One. 2023;18(3):e0277572. https://doi.org/10.1371/journal.pone.0277572
[19] Viswan V, Shaffi N, Mahmud M, et al. Explainable Artificial Intelligence in Alzheimer’s Disease Classification: A Systematic Review. Cogn Comput. 2024;16:1-44. https://doi.org/10.1007/s12559-023-10192-x
[20] Begum AP, Selvaraj P. Alzheimer’s disease classification and detection by using AD-3D DCNN model. Bull Electr Eng Inform. 2023;12(2):882-90.
[21] Marasini A, Shrestha A, Phuyal S, Zaidat OO, Kalia JS. Role of artificial intelligence in unruptured intracranial aneurysm: an overview. Front Neurol. 2022;13:784326.
[22] Shi Z, Hu B, Schoepf UJ, Savage RH, Dargis DM, Pan CW, et al. Artificial intelligence in the management of intracranial aneurysms: current status and future perspectives. Am J Neuroradiol. 2020;41(3):373-9.
[23] Zhou Z, Jin Y, Ye H, et al. Classification, detection, and segmentation performance of image-based AI in intracranial aneurysm: a systematic review. BMC Med Imaging. 2024;24:164. https://doi.org/10.1186/s12880-024-01347-9
[24] Marín-Castañeda LA, de Leon-Mendoza F, Valdez-Ruvalcaba HE. The Use of Artificial Intelligence in the Management of Intracranial Aneurysms. IntechOpen. 2023. Doi: 10.5772/intechopen.110772
[25] Orouskhani M, Zhu C, Rostamian S, Zadeh FS, Shafiei M, Orouskhani Y. Alzheimer’s disease detection from structural MRI using conditional deep triplet network. Neurosci Inform. 2022;2(4):100066.
[26] Mäkelä T, Öman O, Hokkinen L, Wilppu U, Salli E, Savolainen S, et al. Automatic CT Angiography Lesion Segmentation Compared to CT Perfusion in Ischemic Stroke Detection: a Feasibility Study. J Digit Imaging. 2022;35(3):551-63. https://doi.org/10.1007/s10278-022-00611-0
[27] Akay EMZ, Hilbert A, Carlisle BG, Madai VI, Mutke MA, Frey D. Artificial intelligence for clinical decision support in acute ischemic stroke: A systematic review. Stroke. 2023;54(6):1505-16.
[28] Abedi V, Avula V, Chaudhary D, Shahjouei S, Khan A, Griessenauer CJ, et al. Prediction of long-term stroke recurrence using machine learning models. J Clin Med. 2021;10:1286. Doi: 10.3390/jcm10061286
[29] Zhao B, Liu Z, Liu G, Cao C, Jin S, Wu H, et al. Deep Learning-Based Acute Ischemic Stroke Lesion Segmentation Method on Multimodal MR Images Using a Few Fully Labeled Subjects. Comput Math Methods Med. 2021;2021:3628179.
[30] Robben D, Boers AMM, Marquering HA, Langezaal LLCM, Roos YBWEM, van Oostenbrugge RJ, et al. Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning. Med Image Anal. 2020;59:101589.
[31] Ding L, Liu C, Li Z, Wang Y. Incorporating artificial intelligence into stroke care and research. Stroke. 2020;51(12):e351-4.
[32] Mouridsen K, Thurner P, Zaharchuk G. Artificial intelligence applications in stroke. Stroke. 2020;51(8):2573-9.
[33] Alsubaie MG, Luo S, Shaukat K. Alzheimer’s disease detection using deep learning on neuroimaging: A systematic review. Mach Learn Knowl Extr. 2024;6(1):464-505. https://doi.org/10.3390/make6010024
[34] Wen Z, Wang Y, Zhong Y, Hu Y, Yang C, Peng Y, et al. Advances in research and application of artificial intelligence and radiomic predictive models based on intracranial aneurysm images. Front Neurol. 2024;15:1391382. Doi: 10.3389/fneur.2024.1391382
[35] Wei X, Jiang J, Cao W, et al. Artificial intelligence assistance improves the accuracy and efficiency of intracranial aneurysm detection with CT angiography. Eur J Radiol. 2022;149:110169. Doi: 10.1016/j.ejrad.2022.110169
[36] Din M, Agarwal S, Grzeda M, Wood DA, Modat M, Booth TC. Detection of cerebral aneurysms using artificial intelligence: A systematic review and meta-analysis. J Neurointerv Surg. 2023;15(3):262-71.
[37] Cai S, Li H, Zheng F, Kong F, Dao M, Karniadakis GE, et al. Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease. Proc Natl Acad Sci U S A. 2021;118(13):e2100697118.
[38] Sahlein DH, Gibson D, Scott JA, et al. Artificial intelligence aneurysm measurement tool finds growth in all aneurysms that ruptured during conservative management. J Neurointerv Surg. 2023;15:766-70.
[39] Masuo O, Sakakura Y, Tetsuo Y, et al. First-in-human, real-time artificial intelligence assisted cerebral aneurysm coiling: a preliminary experience. J Neurointerv Surg. 2024. Doi: 10.1136/jnis-2024-021873
[40] You W, Sun Y, Feng J, Wang Z, Li L, Chen X, et al. Protocol and Preliminary Results of the Establishment of Intracranial Aneurysm Database for Artificial Intelligence Application Based on CTA Images. Front Neurol. 2022;13:932933.
[41] Subbanna NK, Rajashekar D, Cheng B, Thomalla G, Fiehler J, Arbel T, et al. Stroke lesion segmentation in FLAIR MRI datasets using customized Markov random fields. Front Neurol. 2019;10:541.
[42] Cocosco CA, Zijdenbos AP, Kabani N, Evans AC. A Comparative Study of Model-Based Brain MRI Tissue Classification Methods. BIC Tech Rep. 2002.
[43] Hakim A, Christensen S, Winzeck S, Lansberg MG, Parsons MW, Lucas C, et al. Predicting infarct core from computed tomography perfusion in acute ischemia with machine learning: Lessons from the ISLES challenge. Stroke. 2021;52(7):2328-37.
[44] Hatami N, Cho TH, Mechtouff L, Eker OF, Rousseau D, Frindel C. CNN-LSTM based multimodal MRI and clinical data fusion for predicting clinical outcomes in stroke patients. arXiv. 2022. https://arxiv.org/abs/2205.05545
[45] Gheibi Y, Shirini K, Razavi SN, et al. CNN-Res: deep learning framework for segmentation of acute ischemic stroke lesions on multimodal MRI images. BMC Med Inform Decis Mak. 2023;23:192.
[46] Zhi S, Hu X, Ding Y, Chen H, Li X, Tao Y, et al. An exploration on the machine-learning-based stroke prediction model. Front Neurol. 2024;15:1372431.
[47] Garcia-Salgado BP, Almaraz-Damian JA, Cervantes-Chavarria O, Ponomaryov V, Reyes-Reyes R, Cruz-Ramos C, et al. Enhanced ischemic stroke lesion segmentation in MRI using attention U-Net with generalized Dice focal loss. Appl Sci. 2024;14(8183). https://doi.org/10.3390/app14188183
[48] Nazari-Farsani S, Yu Y, Duarte Armindo R, et al. Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network. Neuroimage Clin. 2023;37:103278. https://doi.org/10.1016/j.nicl.2022.103278
[49] Ye W, Chen X, Li P, Tao Y, Wang Z, Gao C, et al. OEDL: an optimized ensemble deep learning method for the prediction of acute ischemic stroke prognoses using union features. Front Neurol. 2023;14:1158555.
[50] El-Assy AM, Amer HM, Ibrahim HM, Mohamed MA. A novel CNN architecture for accurate early detection and classification of Alzheimer’s disease using MRI data. Sci Rep. 2024;14(1):3463.
[51] Basu S, Wagstyl K, Zandifar A, Collins L, Romero A, Precup D. Early prediction of Alzheimer’s disease progression using variational autoencoders. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part IV. Springer International Publishing; 2019. p. 205-13.
[52] Castellano G, Esposito A, Lella E, Montanaro G, Vessio G. Automated detection of Alzheimer’s disease: a multi-modal approach with 3D MRI and amyloid PET. Sci Rep. 2024;14(1):5210.
[53] Abuhantash F, Abu Hantash MK, AlShehhi A. Comorbidity-based framework for Alzheimer’s disease classification using graph neural networks. Sci Rep. 2024;14(1):21061.
[54] Bhattarai K, Rajaganapathy S, Das T, Kim Y, Chen Y, Alzheimer’s Disease Neuroimaging Initiative, et al. Using artificial intelligence to learn optimal regimen plan for Alzheimer’s disease. J Am Med Inform Assoc. 2023;30(10):1645-56.
[55] Liu N, Liu Y, Logan B, Xu Z, Tang J, Wang Y. Learning the dynamic treatment regimes from medical registry data through deep Q-network. Sci Rep. 2019;9(1):1495.
[56] Morar U, Martin HM, RP M, et al. Prediction of Cognitive Test Scores from Variable Length Multimodal Data in Alzheimer’s Disease. Cogn Comput. 2023;15:2062-86. https://doi.org/10.1007/s12559-023-10169-w
[57] Oh IY, Schindler SE, Ghoshal N, Lai AM, Payne PR, Gupta A. Extraction of clinical phenotypes for Alzheimer’s disease dementia from clinical notes using natural language processing. JAMIA Open. 2023;6(1):ooad014.
[58] Yang J, Xie M, Hu C, Alwalid O, Xu Y, Liu J, et al. Deep learning for detecting cerebral aneurysms with CT angiography. Radiology. 2021;298(1):155-63.
[59] Turhon M, Li M, Kang H, Huang J, Zhang F, Zhang Y, et al. Development and validation of a deep learning model for prediction of intracranial aneurysm rupture risk based on multi-omics factor. Eur Radiol. 2023;33(10):6759-70.
[60] Raghuram A, Sanchez S, Wendt L, et al. 3D aneurysm wall enhancement is associated with symptomatic presentation. J Neurointerv Surg. 2023;15(8):747-52.
[61] Hachem E, Meliga P, Goetz A, Rico PJ, Viquerat J, Larcher A, et al. Reinforcement learning for patient-specific optimal stenting of intracranial aneurysms. Sci Rep. 2023;13(1):7147.
[62] Yoon JT, Lee KM, Oh JH, Kim HG, Jeong JW. Insights and considerations in development and performance evaluation of generative adversarial networks (GANs): What radiologists need to know. Diagnostics. 2024;14(16):1756. https://doi.org/10.3390/diagnostics14161756
[63] Avesta A, Hui Y, Aboian M, Duncan J, Krumholz HM, Aneja S. 3D capsule networks for brain image segmentation. Am J Neuroradiol. 2023;44(5):562-8.
[64] Zhou M, Wang X, Wu Z, Pozo JM, Frangi AF. Intracranial Aneurysm Detection from 3D Vascular Mesh Models with Ensemble Deep Learning. In: Shen D, et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science, vol 11767. Springer, Cham; 2019. p. 27.