Artificial Intelligence in Radiology: Concepts and Applications

Authors

  • Fatemeh Hosseinabadi Assistant Professor Author
  • Younes Ghasemi Author

Keywords:

Radiology, AI, MRI

Abstract

Artificial Intelligence (AI) is rapidly transforming radiology by enhancing diagnostic accuracy, streamlining workflows, and enabling data-driven decision-making. As imaging volumes grow and clinical demands increase, AI tools are becoming integral to modern radiological practice. In this paper, we review the core concepts of AI—including machine learning, deep learning, and image preprocessing—and their relevance to radiology. We highlight key clinical applications across modalities such as X-ray, CT, and MRI, covering tasks like classification, segmentation, detection, and image enhancement. The paper also discusses current challenges and future directions, with a focus on explainable AI, federated learning, and clinical integration.

 

References

[1] Flory MN, Napel S, Tsai EB. AI in radiology: opportunities and challenges. InSeminars in Ultrasound, CT and MRI 2024 Feb 23. WB Saunders.

[2] Guo Y, Li T, Gong B, Hu Y, Wang S, Yang L, Zheng C. From Images to Genes: Radiogenomics Based on Artificial Intelligence to Achieve Non‐Invasive Precision Medicine in Cancer Patients. Advanced Science. 2025 Jan;12(2):2408069.

[3] Yogeshappa VG. AI-driven Precision medicine: Revolutionizing personalized treatment plans. International Journal of Computer Engineering and Technology (IJCET). 2024 Sep 26;15(5):455-74.

[4] Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. Journal of magnetic resonance imaging. 2019 Apr;49(4):939-54..

[5] Koonce B. ResNet 50. InConvolutional neural networks with swift for tensorflow: image recognition and dataset categorization 2021 Jan 5 (pp. 63-72). Berkeley, CA: Apress.

[6] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. InProceedings of the IEEE conference on computer vision and pattern recognition 2017 (pp. 4700-4708).

[7] Tan M, Le Q V E. rethinking model scaling for convolutional neural networks. 2019. arXiv preprint arXiv:1905.11946. 1905.

[8] Wang Y, Lang J, Zuo JZ, Dong Y, Hu Z, Xu X, Zhang Y, Wang Q, Yang L, Wong ST, Wang H. The radiomic-clinical model using the SHAP method for assessing the treatment response of whole-brain radiotherapy: a multicentric study. European Radiology. 2022 Dec;32(12):8737-47.

[9] Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, Lungren MP. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225. 2017 Nov 14.

[10] Sharifi S, Donyadadi A. Detection and Diagnosis of Congenital Heart Disease from Chest X-Rays with Deep Learning Models. International Journal of Applied Data Science in Engineering and Health. 2025 Jan 2;1(1):1-9.

[11] Hamidinekoo A, Denton E, Rampun A, Honnor K, Zwiggelaar R. Deep learning in mammography and breast histology, an overview and future trends. Medical image analysis. 2018 Jul 1;47:45-67.

[12] Suganyadevi S, Pershiya AS, Balasamy K, Seethalakshmi V, Bala S, Arora K. Deep Learning Based Alzheimer Disease Diagnosis: A Comprehensive Review. SN Computer Science. 2024 Apr 4;5(4):391.

[13] Simo AM, Kouanou AT, Monthe V, Nana MK, Lonla BM. Introducing a deep learning method for brain tumor classification using MRI data towards better performance. Informatics in Medicine Unlocked. 2024 Jan 1;44:101423.

[14] Diwan T, Anirudh G, Tembhurne JV. Object detection using YOLO: Challenges, architectural successors, datasets and applications. multimedia Tools and Applications. 2023 Mar;82(6):9243-75.

[15] Asuntha A, Srinivasan A. Deep learning for lung Cancer detection and classification. Multimedia Tools and Applications. 2020 Mar;79(11):7731-62.

[16] Cortés-Ferre L, Gutiérrez-Naranjo MA, Egea-Guerrero JJ, Pérez-Sánchez S, Balcerzyk M. Deep learning applied to intracranial hemorrhage detection. Journal of Imaging. 2023 Feb 7;9(2):37.

[17] Irmakci I, Anwar SM, Torigian DA, Bagci U. Deep learning for musculoskeletal image analysis. In2019 53rd Asilomar conference on signals, systems, and computers 2019 Nov 3 (pp. 1481-1485). IEEE.

[18] Mostafa AM, Zakariah M, Aldakheel EA. Brain tumor segmentation using deep learning on MRI images. Diagnostics. 2023 Apr 27;13(9):1562.

[19] Rahman H, Bukht TF, Imran A, Tariq J, Tu S, Alzahrani A. A deep learning approach for liver and tumor segmentation in CT images using ResUNet. Bioengineering. 2022 Aug 5;9(8):368.

[20] Lei Y, Fu Y, Wang T, Qiu RL, Curran WJ, Liu T, Yang X. Deep learning in multi-organ segmentation. arXiv preprint arXiv:2001.10619. 2020 Jan 28.

[21] Pellicer-Valero OJ, Marenco Jimenez JL, Gonzalez-Perez V, Casanova Ramon-Borja JL, Martín García I, Barrios Benito M, Pelechano Gomez P, Rubio-Briones J, Rupérez MJ, Martín-Guerrero JD. Deep learning for fully automatic detection, segmentation, and Gleason grade estimation of prostate cancer in multiparametric magnetic resonance images. Scientific reports. 2022 Feb 22;12(1):2975.

[22] Sharkey MJ, Taylor JC, Alabed S, Dwivedi K, Karunasaagarar K, Johns CS, Rajaram S, Garg P, Alkhanfar D, Metherall P, O'Regan DP. Fully automatic cardiac four chamber and great vessel segmentation on CT pulmonary angiography using deep learning. Frontiers in Cardiovascular Medicine. 2022 Sep 26;9:983859.

[23] Gou S, Liu W, Jiao C, Liu H, Gu Y, Zhang X, Lee J, Jiao L. Gradient regularized convolutional neural networks for low-dose CT image enhancement. Physics in Medicine & Biology. 2019 Aug 21;64(16):165017.

[24] Schlemper J, Caballero J, Hajnal JV, Price A, Rueckert D. A deep cascade of convolutional neural networks for MR image reconstruction. InInformation Processing in Medical Imaging: 25th International Conference, IPMI 2017, Boone, NC, USA, June 25-30, 2017, Proceedings 25 2017 (pp. 647-658). Springer International Publishing.

Published

2025-06-18